BB

R:TCP Congestion Control

@Yonghul

TCP: Transmission Control Protocol

Sending Host

 Connection

* Rellable transmission

* Sequence number
* Ack

* Flow control
* Congestion control

Receiving Host

Application Layer

Application Layer Receives
Packet{ & rlogin host request for login

Transport Layer h. 4 Transport Layer

TCP segment TCP segment

Internet Layer Internet Layer
IP datagram IP datagram
I I
Data Link Layer # ¢ Data Link Layer
Frame Frame
Physical Netwaork Physical Metwark
Layer Frame Layer Frame

Metwork media

What 1s TCP Congestion control

* \We have limited bandwidth from sender to receiver

* We need to avoid network congestion as much as possible

* Avoid send too much data into network to cause meaning less
congestion

* Send data In a proper speed, to maximum network utilization
* Fairness: multiple can share a network infrastructure

Existing Congestion Control Algorithm

* Congestion Window:

* all the congestion control algorithm finally control this parameter
* |t control how many data can be sent but not acked

* l.e., Max-inflight
* Most congestion control works in the sender side
* How to set a CWND?

* How to scale up? How to scale down

* Loss based congestion control

* Reduce the CWND(Congestion window) when loss Is detected

* Liner increase the CWND until next congestion happen
s THENDZRERIR

Reno

time

TCP Sawtooth, red curve represents the network capacity

* At |east, we call It reno, from textbook

 additive increase/multiplicative decrease (AIMD)
o M, FEMRK

* Scale up: Liner increase
* MSS/CWND each ACK, result in MSS per RTT

* Scale Down: Half the CWND when congestion happen

maximum segment size (MSS): Usually 1450 bytes or so
round-trip delay time (RTT): 1ms 200km; 200ms over Pacific

https://en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease
https://en.wikipedia.org/wiki/Maximum_segment_size
https://en.wikipedia.org/wiki/Round-trip_delay_time

Reno etc.: Starting

* Slow start:
* “Slow start” increase CWND very rapidly

* Increase CWND on every ACK, result in exponential CWND increase
* IXRTT;1 sent; 1 ack; CWND = 2
* 2xRTT;2,3 sent; 2,3 ack; CWND =4
* 3xRTT;4,5,6,7 sent; 4,5,6,7 ack; CWND = 8
* 4xRT1T1:8,9,10,11,12,13,14,15,16 sent; -

* ssthresh (slow start threshold)
* When CWND > ssthresh, then increase cwnd linerly

CURBRIC:
Linux kernel default

* How to scale up? How to
scale down? This Is a
question

* When loss Is detected, Scale
down CWND and slowly

approach last CWND

* |[f loss Is not detected when
last CWND Is reached, speed
up the scale up

TCP CUBIC

Packet loss
event

" Around W_,_, window growth almost

b Fast grgwth Upon becomes zero

Congestion window

reduction :

Steady State Behavior . |

Loss detection

- Nerwork limit

\‘\rm' ot window W
g " Winax

'
.
!
i
1
!
i

1 —right branch of cubic function Time

2 — left branch of cubic function

3 — left and right branches of cubic function

CUBIC

* Friendly to long distance link, which have large RTT
* Reno 1s RTT based, the CWND scale up is driven by ack
* CUBIC CWND is time based, much friendly to the large RTT link

cund = C(T — K)3 + Wnaz
where K = \3/ wmawél_ﬁ)
* When T =0, cwnd = [W,;,.x

* Whay Window size just before the last reduction
* T: time

L 0ss based control 1s not

optimal

* \We have buffer over the network

* You are not going to loss packet
before the buffer is full

* Your latency will increase when
datagram start queueing

* RTprop: round-trip propagation time
* Physical time without queueing

* BtIBw: bottleneck bandwidth
* BDP:bandwidth-delay product

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT

buffer
app limited bandwidth limited limited
3
N
%&
%@Q
RTprop
g BtlBw
& “ V
LR
S“L optimum loss-based
o operating congestion
- @Q point control
“ is here operates here

What It we have random loss?

500

450

400

350

300

250

200

150

100

50

1

3

5

CUBIC under random loss

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Model the bottleneck and TCP connection

* bottleneck
* [t determines the connection’s maximum data-delivery rate.

* |t's where persistent queues form
* Data only queueing at the bottleneck

* Queuing will increase the RTT

* From TCP point of view, complex link can be simplified as single
link with RTT and bandwidth
* RtProp
* BtIBw

How BBR set the
congestion window?

* BBR: bottleneck bandwidth and
round-trip propagation time

* Set the CWND = BDP
* BDP = RtProp X BtIBw

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT

app limited

RTprop

bandwidth limited

3
\%‘\‘”%
\

BtlBw

N

optimum loss-based
operating congestion
point control

is here operates here

How to estimate RTprop and BtIBW?
* RTyrop = RTyrop + min(ny) = min(RTT,) Vt € [T — Wy, T]

* Choose the minimum RTTt as Rtprop
* TCP will track RTT by measure the time from packet send to it get acked

* BtIBw = max(deliverRate;) Vt € |T —Ws,T]
* Choose the maximum BW as BtIBW

TUTRAE B

* Since RTprop Is visible only to the left
of BDP and BtIBw only to the right in
flgure 1, they obey an uncertainty
principle: whenever one can be
measured, the other cannot.

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT

app limited

RTprop

bandwidth limited

e
%@Q

ttttttttttttt

3
\‘b‘\&
PN

buffer
limited

g BtlBw
optimum loss-based
operating congestion
point control
is here operates here

Offsets Octet
Octet

0
4
8

12

16
20

60

Bit
0
32
64

96

128
160

480

7,6 5 4 3 2

Data offset

This receive window

R@VlSlt TCP Header Is for Flow control

TCP segment header
1 2 3

1.0 7, 6 5 4 3 /2 1 0 765432 076543 2/1/0

Source port Destination port

@dgment number (if ACK set

U [A ([P |R |S |F

Reserved N C E . .
W C |[R C |S S |Y | Window Size
S (W c R |C s |s Y 1] < -

000

Checksum Urgent pointer (if URG set)

Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)

BBR: On Ack

function onAck(packet)
rtt = now - packet.sendtime
update _min_filter(RTpropFilter, rtt)
delivered += packet.size
delivered time = now

deliveryRate = (delivered - packet.delivered)
/(now - packet.delivered time)

if (deliveryRate > BtlBwFilter.currentMax || !
packet.app limited)

update max_filter(BtlBwFilter, deliveryRate)
if (app_limited until > @)

app_limited until - = packet.size

* RTT & BW measure by tracking
packet send time & sequence

* Sometime deliveryRate Is limited
by application.
* BBR tracking if the deliveredRate Is

limited by application and take all
the link limited sample.

BBR: Sending « cwnd_gain: small multiplier to

function send(packet) deal W|th ﬂetWOI’k COﬂdItIOﬂ
RTPropFiLtan. currentiiin oo e Loss, etc.
if (inflight >= cwnd_gain * bdp) . . .
// wait for ack or timeout ° paCIHQ—galn 1S COntrO”ed by
return BBR, to do the RTprobe and
if (now >= nextSendTime)
packet = nextPacketToSend() EB\A/F)r()k)EE
if (! packet) * Can be larger than 1 or smaller
app_limited_until = inflight than 1 depend on BBR state
return * Like 1.25 or 0.75

packet.app limited = (app_limited until > 9)
packet.sendtime = now

packet.delivered = delivered
packet.delivered time = delivered time
ship(packet)

nextSendTime = now + packet.size /(pacing gain *
BtlBwFilter.currentMax)

timerCallbackAt(send, nextSendTime)

BBR control cycle In steady-state

. FIGURE 2:RTT (BLUE), INFLIGHT (GREEN) AND DELIVERY RATE (RED) DETAIL

* Increase the pace_gain to probe
Bandwidth

* Decrease pace_gain to probe
RTT

L

N

u
I

pipe fullso RTT
increases with inflight -
(queue created)

‘v 500 g

RTT [ms])

inflight (kB]

gain>1so

inflight increases

cycle gain |
[1.00]1.00]1.00[1.00]1 ool 25|o75| 00[1.00[1.00[1.00]1.00]1.00] 125] 0.75[1.00]1.00

max BtlBw x cycle galn
used as sending rate ack from send updates filter one RTT later

- 950 g

9.25

Z 900 g
i ack arrival adds sample

to BtlBw max filter

42
Time (sec.)

FIGURE 3: BANDWIDTH CHANGE

— inflight

BBR: bandwidth Change

* Figure3 shows
* 10Mpbs -> 20Mpbs
e 20Mpbs -> 10Mpbs

RTT (m

BtlBw doubled
to 20Mbps estimate

doubled and
pipe full

inflight (kB)

— inflight increases,
— pushing up RTT, until
clamped by cwnd_gain

20Mbps BtlBw
times out of filter

RTT (ms)

inflight reduction
lowers RTT which
lowers inflight...
until optimum

BtlBw halved; regained
inflight doesn’t

fitin pipe,

increasing RTT

o
o

inflight (kB)

42 43
Time (sec.)

FIGURE 4: FIRST SECOND OF A 10-MBPS, 40-MS BBR FLOW

BBR: Single connection .

.

startup

 Startup:

* Binary search with a gain of 2/In2 i

* This discovers BtIBw in log, BDP ' tme sec)
RTTS 120 B cwnd_gain clamps

| BBRinflight at 3BDP cuBie bhe ¢ BBR operating

switches from at full BW with

* but creates up to 2BDP excess exponentaltoneer /tq t
gueue In the process — R Y

data sent or acked [MB])

. 0.50
" time (sec))
([J
D ra l n . . _ FIGURE 5: FIRST 8 SECONDS OF 10-MBPS, 40-MS CUBIC AND BBR FLOWS
* Use inverse startup gain to get rid
Of queue <«—— packet lossand ——

recovery episodes

bottleneck’s 250 ms
buffer limit

time (sec.)

BBR: Multiple connection

* when the RTProp estimate has not been updated (I.e., by
measuring a lower RTT) for many seconds, BBR enters ProbeRTT,

which reduces the inflight to four packets for at least one round
trip, then returns to the previous state.

* BBR self synchronizes

* Large flows entering ProbeRTT drain many packets from the queue, so
several flows see a new RTprop (new minimum RTT). This makes their
RTprop estimates expire at the same time, so they enter ProbeRTT

together

BBR: self synchronizes ProbeRT

FIGURE 6: THROUGHPUTS OF 5 BBR FLOWS SHARING A BOTTLENECK

oo
o

o
o

I
&)

v
ol
0
=
-}
o
-
Qo
|
o
—
-
P

20 30
time (sec.)

Compare BBR with CUBIC

- FIGURE 7: BBR VS. CUBIC RELATIVE THROUGHPUT IMPROVEMENT

* Google gain 2-25x CUBIC Bandwidth
INn their intercontinental network

* Also compare cumulative distribution
functions of BBR and CUBIC

o

~

o
|

cumulative probability
o
wul
o
|

)
=3
o

=
Q0
=3
(@]
[

-
e}

O

m

]

|

-
=3
o

-
Qo
=
o
[

=
=

[as
m
an]

Zx improvement

510) 100 200 500 1000 2000 5000
CUBIC throughput (Mbps) - log scale

Random loss tolerance

* CUBIC have very poor loss tolerance

- FIGURE 8: BBR VS. CUBIC GOODPUT UNDER LOSS

wv)
O
=
e
-0
O
i
Qo
-0
O
| .
i o
I

0.1 1T 2 5 10 2030 50
loss rate (%) - log scale

Interesting Case of SGSN

* SGSN(serving GPRS support node)

* |t I1s a standard PC so it have decent
memory, which can maintain a large
queue

* The queueing time is so long, even
| on g er th an TCP SYN t|m e OUt FIGURE 10: STEADY-STATE MEDIAN RTT VARIATION WITH LINK BUFFER SIZE

* If network congestion happen, the
user can not even establish a single

TCP connection with server.

O
(]
A
>
Q
(=
(O]
2
O
—

new connections fail in Linux | Android

new connections fail in Windows | Mac OS |iOS

015075 4d.5
buffer (MB)

Weakness

* CPU usage(slightly higher)
* Fairness working with other congestion algorithm

Thanks

