
BBR:TCP Congestion Control
@Yonghui

TCP: Transmission Control Protocol

• Connection

• Reliable transmission
• Sequence number
• Ack

• Flow control

• Congestion control

What is TCP Congestion control

• We have limited bandwidth from sender to receiver

• We need to avoid network congestion as much as possible
• Avoid send too much data into network to cause meaning less

congestion

• Send data in a proper speed, to maximum network utilization

• Fairness: multiple can share a network infrastructure

Existing Congestion Control Algorithm

• Congestion Window:
• all the congestion control algorithm finally control this parameter
• It control how many data can be sent but not acked
• i.e., Max-inflight
• Most congestion control works in the sender side

• How to set a CWND?
• How to scale up? How to scale down

• Loss based congestion control
• Reduce the CWND(Congestion window) when loss is detected
• Liner increase the CWND until next congestion happen

• 在拥塞的边缘反复试探

Reno

• At least, we call it reno, from textbook

• additive increase/multiplicative decrease (AIMD)
• 线性加，乘性减

• Scale up: Liner increase
• MSS/CWND each ACK，result in MSS per RTT

• Scale Down: Half the CWND when congestion happen

maximum segment size (MSS)：Usually 1450 bytes or so

round-trip delay time (RTT)：1ms 200km； 200ms over Pacific

https://en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease
https://en.wikipedia.org/wiki/Maximum_segment_size
https://en.wikipedia.org/wiki/Round-trip_delay_time

Reno etc.: Starting

• Slow start:
• “Slow start” increase CWND very rapidly
• Increase CWND on every ACK, result in exponential CWND increase

• 1xRTT;1 sent; 1 ack; CWND = 2

• 2xRTT;2,3 sent; 2,3 ack; CWND = 4

• 3xRTT;4,5,6,7 sent; 4,5,6,7 ack; CWND = 8

• 4xRTT;8,9,10,11,12,13,14,15,16 sent; …

• ssthresh (slow start threshold)
• When CWND > ssthresh, then increase cwnd linerly

CUBIC:
Linux kernel default
• How to scale up? How to

scale down? This is a
question

• When loss is detected, Scale
down CWND and slowly
approach last CWND

• If loss is not detected when
last CWND is reached, speed
up the scale up

CUBIC

• Friendly to long distance link, which have large RTT
• Reno is RTT based, the CWND scale up is driven by ack
• CUBIC CWND is time based, much friendly to the large RTT link

• When T = 0, cwnd = β wmax

• wmax: Window size just before the last reduction
• T: time

Loss based control is not
optimal
• We have buffer over the network

• You are not going to loss packet
before the buffer is full

• Your latency will increase when
datagram start queueing

• RTprop: round-trip propagation time
• Physical time without queueing

• BtlBw: bottleneck bandwidth

• BDP:bandwidth-delay product

What if we have random loss?

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

CUBIC under random loss

Model the bottleneck and TCP connection

• bottleneck
• It determines the connection’s maximum data-delivery rate.
• It’s where persistent queues form

• Data only queueing at the bottleneck

• Queuing will increase the RTT

• From TCP point of view, complex link can be simplified as single
link with RTT and bandwidth
• RtProp
• BtlBw

How BBR set the
congestion window?
• BBR: bottleneck bandwidth and

round-trip propagation time

• Set the CWND = BDP

• BDP = RtProp × BtlBw

How to estimate RTprop and BtlBW?

• ෣𝑅𝑇𝑝𝑟𝑜𝑝 = 𝑅𝑇𝑝𝑟𝑜𝑝 +𝑚𝑖𝑛 η𝑡 = 𝑚𝑖𝑛 𝑅𝑇𝑇𝑡 ∀𝑡 ∈ 𝑇 −𝑊𝑅 , 𝑇
• Choose the minimum RTTt as Rtprop
• TCP will track RTT by measure the time from packet send to it get acked

• ෣𝐵𝑡𝑙𝐵𝑤 = 𝑚𝑎𝑥 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑅𝑎𝑡𝑒𝑡 ∀𝑡 ∈ 𝑇 −𝑊𝑅 , 𝑇
• Choose the maximum BW as BtlBW

“测不准原理”

• Since RTprop is visible only to the left
of BDP and BtlBw only to the right in
figure 1, they obey an uncertainty
principle: whenever one can be
measured, the other cannot.

Revisit TCP Header
This receive window
is for Flow control

BBR: On Ack
function onAck(packet)

rtt = now - packet.sendtime

update_min_filter(RTpropFilter, rtt)

delivered += packet.size

delivered_time = now

deliveryRate = (delivered - packet.delivered)
/(now - packet.delivered_time)

if (deliveryRate > BtlBwFilter.currentMax || !
packet.app_limited)

update_max_filter(BtlBwFilter, deliveryRate)

if (app_limited_until > 0)

app_limited_until - = packet.size

• RTT & BW measure by tracking
packet send time & sequence

• Sometime deliveryRate is limited
by application.
• BBR tracking if the deliveredRate is

limited by application and take all
the link limited sample.

BBR: Sending
function send(packet)

bdp = BtlBwFilter.currentMax *
RTpropFilter.currentMin

if (inflight >= cwnd_gain * bdp)

// wait for ack or timeout

return

if (now >= nextSendTime)

packet = nextPacketToSend()

if (! packet)

app_limited_until = inflight

return

packet.app_limited = (app_limited_until > 0)

packet.sendtime = now

packet.delivered = delivered

packet.delivered_time = delivered_time

ship(packet)

nextSendTime = now + packet.size /(pacing_gain *
BtlBwFilter.currentMax)

timerCallbackAt(send, nextSendTime)

• cwnd_gain: small multiplier to
deal with network condition
• Loss, etc.

• pacing_gain is controlled by
BBR, to do the RTprobe and
BWprobe
• Can be larger than 1 or smaller

than 1 depend on BBR state
• Like 1.25 or 0.75

BBR control cycle in steady-state

• Increase the pace_gain to probe
Bandwidth

• Decrease pace_gain to probe
RTT

BBR: bandwidth Change

• Figure3 shows
• 10Mpbs -> 20Mpbs
• 20Mpbs -> 10Mpbs

BBR: Single connection
startup
• Startup:

• Binary search with a gain of 2/ln2
• This discovers BtlBw in log2 BDP

RTTs
• but creates up to 2BDP excess

queue in the process

• Drain
• Use inverse startup gain to get rid

of queue

BBR: Multiple connection

• when the RTProp estimate has not been updated (i.e., by
measuring a lower RTT) for many seconds, BBR enters ProbeRTT,
which reduces the inflight to four packets for at least one round
trip, then returns to the previous state.

• BBR self synchronizes
• Large flows entering ProbeRTT drain many packets from the queue, so

several flows see a new RTprop (new minimum RTT). This makes their
RTprop estimates expire at the same time, so they enter ProbeRTT
together

BBR: self synchronizes ProbeRT

Compare BBR with CUBIC

• Google gain 2-25x CUBIC Bandwidth
in their intercontinental network
• Also compare cumulative distribution

functions of BBR and CUBIC

Random loss tolerance

• CUBIC have very poor loss tolerance

Interesting Case of SGSN

• SGSN(serving GPRS support node)
• It is a standard PC so it have decent

memory, which can maintain a large
queue

• The queueing time is so long, even
longer than TCP SYN timeout.

• If network congestion happen, the
user can not even establish a single
TCP connection with server.

Weakness

• CPU usage(slightly higher)

• Fairness working with other congestion algorithm

Thanks

