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What 1s TCP Congestion control

* \We have limited bandwidth from sender to receiver

* We need to avoid network congestion as much as possible

* Avoid send too much data into network to cause meaning less
congestion

* Send data In a proper speed, to maximum network utilization
* Fairness: multiple can share a network infrastructure



Existing Congestion Control Algorithm

* Congestion Window:

* all the congestion control algorithm finally control this parameter
* |t control how many data can be sent but not acked

* l.e., Max-inflight
* Most congestion control works in the sender side
* How to set a CWND?

* How to scale up? How to scale down

* Loss based congestion control

* Reduce the CWND(Congestion window) when loss Is detected

* Liner increase the CWND until next congestion happen
s THENDZRERIR




Reno

time

TCP Sawtooth, red curve represents the network capacity

* At |east, we call It reno, from textbook

 additive increase/multiplicative decrease (AIMD)
o M, FEMRK

* Scale up: Liner increase
* MSS/CWND each ACK, result in MSS per RTT

* Scale Down: Half the CWND when congestion happen

maximum segment size (MSS): Usually 1450 bytes or so
round-trip delay time (RTT): 1ms 200km; 200ms over Pacific



https://en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease
https://en.wikipedia.org/wiki/Maximum_segment_size
https://en.wikipedia.org/wiki/Round-trip_delay_time

Reno etc.: Starting

* Slow start:
* “Slow start” increase CWND very rapidly

* Increase CWND on every ACK, result in exponential CWND increase
* IXRTT;1 sent; 1 ack; CWND = 2
* 2xRTT;2,3 sent; 2,3 ack; CWND =4
* 3xRTT;4,5,6,7 sent; 4,5,6,7 ack; CWND = 8
* 4xRT1T1:8,9,10,11,12,13,14,15,16 sent; -

* ssthresh (slow start threshold)
* When CWND > ssthresh, then increase cwnd linerly



CURBRIC:
Linux kernel default

* How to scale up? How to
scale down? This Is a
question

* When loss Is detected, Scale
down CWND and slowly

approach last CWND

* |[f loss Is not detected when
last CWND Is reached, speed
up the scale up
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CUBIC

* Friendly to long distance link, which have large RTT
* Reno 1s RTT based, the CWND scale up is driven by ack
* CUBIC CWND is time based, much friendly to the large RTT link

cund = C(T — K)3 + Wnaz
where K = \3/ wmawél_ﬁ )
* When T =0, cwnd = [ W,;,.x

* Whay Window size just before the last reduction
* T: time




L 0ss based control 1s not

optimal

* \We have buffer over the network

* You are not going to loss packet
before the buffer is full

* Your latency will increase when
datagram start queueing

* RTprop: round-trip propagation time
* Physical time without queueing

* BtIBw: bottleneck bandwidth
* BDP:bandwidth-delay product

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT

buffer
app limited bandwidth limited limited
3
N
%&
%@Q
RTprop
g BtlBw
& “ V
LR
S“L optimum loss-based
o operating congestion
- @Q point control
“ is here operates here




What It we have random loss?
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Model the bottleneck and TCP connection

* bottleneck
* [t determines the connection’s maximum data-delivery rate.

* |t's where persistent queues form
* Data only queueing at the bottleneck

* Queuing will increase the RTT

* From TCP point of view, complex link can be simplified as single
link with RTT and bandwidth
* RtProp
* BtIBw



How BBR set the
congestion window?

* BBR: bottleneck bandwidth and
round-trip propagation time

* Set the CWND = BDP
* BDP = RtProp X BtIBw

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT
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How to estimate RTprop and BtIBW?
* RTyrop = RTyrop + min(ny) = min(RTT,) Vt € [T — Wy, T]

* Choose the minimum RTTt as Rtprop
* TCP will track RTT by measure the time from packet send to it get acked

* BtIBw = max(deliverRate;) Vt € |T —Ws,T]
* Choose the maximum BW as BtIBW



TUTRAE B

* Since RTprop Is visible only to the left
of BDP and BtIBw only to the right in
flgure 1, they obey an uncertainty
principle: whenever one can be
measured, the other cannot.

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT
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Offsets Octet
Octet
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Data offset

This receive window

R@VlSlt TCP Header Is for Flow control

TCP segment header
1 2 3

1.0 7, 6 5 4 3 /2 1 0 765432 076543 2/1/0

Source port Destination port

@dgment number (if ACK set

U [A ([P |R |S |F

Reserved N C E . .
W C |[R C |S S |Y | Window Size
S (W c R |C s |s Y 1] < -

000

Checksum Urgent pointer (if URG set)

Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)



BBR: On Ack

function onAck(packet)
rtt = now - packet.sendtime
update _min_filter(RTpropFilter, rtt)
delivered += packet.size
delivered time = now

deliveryRate = (delivered - packet.delivered)
/(now - packet.delivered time)

if (deliveryRate > BtlBwFilter.currentMax || !
packet.app limited)

update max_filter(BtlBwFilter, deliveryRate)
if (app_limited until > @)

app_limited until - = packet.size

* RTT & BW measure by tracking
packet send time & sequence

* Sometime deliveryRate Is limited
by application.
* BBR tracking if the deliveredRate Is

limited by application and take all
the link limited sample.



BBR: Sending « cwnd_gain: small multiplier to

function send(packet) deal W|th ﬂetWOI’k COﬂdItIOﬂ
RTPropFiLtan. currentiiin oo e Loss, etc.
if (inflight >= cwnd_gain * bdp) . . .
// wait for ack or timeout ° paCIHQ—galn 1S COntrO”ed by
return BBR, to do the RTprobe and
if (now >= nextSendTime)
packet = nextPacketToSend() EB\A/F)r()k)EE
if (! packet) * Can be larger than 1 or smaller
app_limited_until = inflight than 1 depend on BBR state
return * Like 1.25 or 0.75

packet.app limited = (app_limited until > 9)
packet.sendtime = now

packet.delivered = delivered
packet.delivered time = delivered time
ship(packet)

nextSendTime = now + packet.size /(pacing gain *
BtlBwFilter.currentMax)

timerCallbackAt(send, nextSendTime)



BBR control cycle In steady-state

. FIGURE 2:RTT (BLUE), INFLIGHT (GREEN) AND DELIVERY RATE (RED) DETAIL
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FIGURE 3: BANDWIDTH CHANGE

— inflight

BBR: bandwidth Change

* Figure3 shows
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FIGURE 4: FIRST SECOND OF A 10-MBPS, 40-MS BBR FLOW
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BBR: Multiple connection

* when the RTProp estimate has not been updated (I.e., by
measuring a lower RTT) for many seconds, BBR enters ProbeRTT,

which reduces the inflight to four packets for at least one round
trip, then returns to the previous state.

* BBR self synchronizes

* Large flows entering ProbeRTT drain many packets from the queue, so
several flows see a new RTprop (new minimum RTT). This makes their
RTprop estimates expire at the same time, so they enter ProbeRTT

together



BBR: self synchronizes ProbeRT

FIGURE 6: THROUGHPUTS OF 5 BBR FLOWS SHARING A BOTTLENECK
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Compare BBR with CUBIC

- FIGURE 7: BBR VS. CUBIC RELATIVE THROUGHPUT IMPROVEMENT

* Google gain 2-25x CUBIC Bandwidth
INn their intercontinental network

* Also compare cumulative distribution
functions of BBR and CUBIC
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Random loss tolerance

* CUBIC have very poor loss tolerance

- FIGURE 8: BBR VS. CUBIC GOODPUT UNDER LOSS
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Interesting Case of SGSN

* SGSN(serving GPRS support node)

* |t I1s a standard PC so it have decent
memory, which can maintain a large
queue

* The queueing time is so long, even
| on g er th an TCP SYN t|m e OUt FIGURE 10: STEADY-STATE MEDIAN RTT VARIATION WITH LINK BUFFER SIZE

* If network congestion happen, the
user can not even establish a single
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Weakness

* CPU usage(slightly higher)
* Fairness working with other congestion algorithm
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