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Applications of LSM-Tree

Key-Value Store (KVS) has become a necessary infrastructure.
¢ Indexing, Caching (Redis, Memcached) B-Tree based, HASH based

¢ Storage System (Persistent Key-value Store)
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Beginning of LSM-Tree

1 1992: The Design and Implementation of a Log-Structured File System (LSF)
» Out-of-place Updates (compared with FFS In-place Updates)
» Write Sequentially
» Garbage Collection
> ...

1 1996: The Log-Structured Merge-Tree (LSM-tree) Ck tree ... Cqtree Co tree

» Out-of-place update m/e_r_{e W
» Optimized for write / Sacrifice read

Ir reorganization (mer m ilon |
i Require data reorganization (merge/compaction) Dk Memory




Modern Structure of LSM-Tree

O Structure
» Memory Component (Memtable) Co

» Disk Component (SSTable) @ ===--

> Level 0 Cl
» Other Levels 2
» Log (WAL/MANIFEST)

U Operations
» Read (Point Query / Range Query) ¢k

7merge sort

» Write
 Memory Write
* Flush
« Compaction
» Delete is also Write. (Write tombstone)
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Operations — Point Query
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» Returns immediately when
something found

» Problems:
» Read Amplification:

» Files: (Worst Case) Search (N -
1 + files num of level-0) files.

* Inside the file
» Optimization
» Page cache/Block cache
> Bloom filter
» Other Index/Filter



Operations — Range Query
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for (itr->Seek(23); itr->Valid(); itr- >Next()) { if (itr-
>key() < 40) {

}else ...

» Must seek every sorted run
» Bloom filter not support range query
» Optimization

» Parallel Seeks

> Prefix bloom filter(RocksDB)

» Other Index



Operations — Simple Write
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Operations — Simple Write

Put(45, val)
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Operations — Simple Write

Put(37, val)
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Operations — Simple Write

Put(37, val)
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Operations — Simple Write

Application Storage Log
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Operations — Compaction Tiered vs Leveled
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Leveled Compaction

Each level has N sorted runs (overlapped).

Compaction merges all sorted runs in one
level to create a new sorted run in the next
level.

Minimizes write amplification at the cost
of read and space amplification.

Each level is one sorted run.
Compaction into Ln merges data from Ln-1 into Ln.

Compaction into Ln rewrites data that was
previously merged into Ln.

Minimizes space amplification and read
amplification at the cost of write amplification.
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Operations — Compaction Tiered + Leveled

MemTable “acs Tew
~“~‘ dCo,n
‘*--f’f’”’bn

levelO 0-100
levell | 0-100 | 0-100 |
| 0-100 | 0-100 ]| 0-100

» Less write amplification than leveled and less space amplification than tiered.
» More read amplification than leveled and more write amplification than tired.
> Itis flexible about the level at which the LSM tree switches from tiered to leveled.
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Write Operation Summary

» Write log firstly, and write in memory. (Critical Path)
» Flush from memory to disk. (Write Stall)
» Compactions. (Write Amplification)
» Optimization
» Compaction Algorithm

» Client Operation & Internal Operation Tradeoff
» Cache...

memory

disk
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FAST16’ WiscKey

» Decouple sorting and garbage collection

» Harness SSD’s internal parallelism for range queries
» Online and light-weight garbage collection

» Minimize I/O amplification and crash consistent

key

LSM-tree Value Log



17

WiscKey Range Query

> Parallel range query
> leverage parallel random reads of SSDs
» prefetch key-value pairs in advance
» detect a sequential pattern
» prefetch concurrently in background

Die Die Die Die
Channel Flash Channel

Figure 2: SSD Architecture: Internal parallelism in SSDs
creates opportunities for hardware-level isolation.
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Figure 3: Sequential and Random Reads on SSD. This
Sfigure shows the sequential and random read performance for

various request sizes on a modern SSD device. All requests are
issued to a 100-GB file on ext4.
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WiscKey Garbage Collection

» Online and light-weight garbage collection
» append (ksize, vsize, key, value) in value log

» Remove LSM-tree log in WiscKey
» store head in LSM-tree periodically
» scan the value log from the head to recover

LSM-tree Value Log
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Summary

> Designing Access Methods: The RUM Conjecture Kead Qgpacized

 Read, Update, Memory(Space) — Optimize Two
at the Expense of the Third

 Read Amplification vs Write Amplification vs

Space Amplification

RocksDB Timeline

2012

2013

2014

2015

2016

2017

2018

2019

2020

Fork from LevelDB
Add Multithreaded Compactions

Open Source, Serious Production Use Cases
Component Pluggability

Support Backups
MongoRocks (MongoDB engine) in production at Facebook

Support Transactions
Support Bulk Loading

MyRocks (MySQL engine) in production at Parse
Support DeleteRange()

Experimented caching on NVM

Rocksandra (Apache Cassandra engine) in production at Instagram
Start to optimize for disaggregated storage

Parallel /O within MultiGet()

Partial Support of user-defined timestamps

indexes
B-Tree Trie
Skiplist

Cracking
Adaptive structures
PDT Mewne Sparse Index

LSM
Bl Iter
Differential £37 oonz\f:)per’oximat

structures MaSM Bitmap indexes

Write Optimized Space Opftimized

Figure 1: Popular data structures in the RUM space.

> Initial Optimization Targets are Write Amplification
» Majority of use cases are bounded by SSD space

» Reducing CPU overheads is becoming more important for
efficiency

» Now working on disaggregated storage to achieve balanced
CPU and SSD usage
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