Log-Structured Merge-Tree

Nope
May 29
Learn-Sys Group

Applications of LSM-Tree

Key-Value Store (KVS) has become a necessary infrastructure.
¢ Indexing, Caching (Redis, Memcached) B-Tree based, HASH based

¢ Storage System (Persistent Key-value Store)

o oSk /W
o
» BigTable @ APACHE A W’;MW
< HBase Google Cloud HBHSE

Bigtable cassandra

=

levelpB

<+ Cassandra
O Storage Engine

<+ LevelDB

<+ RocksDB

<+ MyRocks

Beginning of LSM-Tree

1 1992: The Design and Implementation of a Log-Structured File System (LSF)
» Out-of-place Updates (compared with FFS In-place Updates)
» Write Sequentially
» Garbage Collection
> ...

1 1996: The Log-Structured Merge-Tree (LSM-tree) Ck tree ... Cqtree Co tree

» Out-of-place update m/e_r_{e W
» Optimized for write / Sacrifice read

Ir reorganization (mer m ilon |
i Require data reorganization (merge/compaction) Dk Memory

Modern Structure of LSM-Tree

O Structure
» Memory Component (Memtable) Co

» Disk Component (SSTable) @ ===--

> Level 0 Cl
» Other Levels 2
» Log (WAL/MANIFEST)

U Operations
» Read (Point Query / Range Query) ¢k

7merge sort

» Write
 Memory Write
* Flush
« Compaction
» Delete is also Write. (Write tombstone)

(a) LSM-tree

L0 (:I;ks) () U [43 : IIO-I
LI (10MB) D D 07 |\-g)|
raoms) () () () (U (Y

s ()OO 0O U

sy QOQ QOO0 0

D SSTable files O memtable . immutable
(b) LevelDB

Operations — Point Query

MemTable
0-99

@

LevelO

Levell

Level2

Level3

Level4

17-40

J v J
Va > 2

57-75 76-90] {91-99]
v, % L

12-22

el)

» Returns immediately when
something found

» Problems:
» Read Amplification:

» Files: (Worst Case) Search (N -
1 + files num of level-0) files.

* Inside the file
» Optimization
» Page cache/Block cache
> Bloom filter
» Other Index/Filter

Operations — Range Query

MemTable
0-99

Seek(23)

LevelO

Levell

Level2

Level3

Level4

52-70

R N\
71//9
J o\ J

17-40

41-56

57-75

[EIIE

12-22

23-33

34-45

46-60 J [60-77

J

)

for (itr->Seek(23); itr->Valid(); itr- >Next()) { if (itr-
>key() < 40) {

}else ...

» Must seek every sorted run
» Bloom filter not support range query
» Optimization

» Parallel Seeks

> Prefix bloom filter(RocksDB)

» Other Index

Operations — Simple Write

Put(23, val)

Application
|H:ead| [Tail -]+ | l
DRAM Memtable
DRAM Immutable
Level O

Head|

Level 1

Storage Log

Tail

Operations — Simple Write

Put(45, val)

Application

|H'E'E.d| |Ta'||_ | ,1 e |

|

DRAM Memtable

v

. *l 23 | ,.I + oo |

DRAM Immutable

|

Level O

Storage Log
Headl 23,value ‘C |

Level 1

Tail

Operations — Simple Write

Put(37, val)

Application Storage Log
|H:ead| (Tl oo 75] l Headl 23,value ‘C | 45 value |C ‘ Tail
. o[45 |- o+ | DRAM Memtable (FULL)
............ ,| 73 |1 + o |
DRAM Immutable
Level O

Level 1

10

Operations — Simple Write

Put(37, val)

Application Storage Log

[Head] [Tail }---s 4 l Head| 23,value ‘C | 45,value |C |
DRAM Memtable (FULL)
k=
[Head| [Tail }-——[+= | " DRAM Immutable (FULL)
"""""" ECE e EXN Initiate background
........... +| 23 | _| g | ODmpaCﬁDr'l

o0 T

Tail

Operations — Simple Write

Application Storage Log
[Fead] [Tl]-—{*=] l Head | 23,value |C | 45,value |C | 37,value |C | Tail
DRAM Memtable (FULL)
|+m| _,,|3?| ,|+m|
(Head] [Tail - DRAM Immutable (FULL)
| - e 45 e Initiate background
[+ |-r[23 - oompaction

ECOR o

12

Operations — Compaction Tiered vs Leveled

levelO

levell

level2

levelO

levell

level2

~[0100 |
0-100]
0-100
0-100] [0-100
0-100] [0-100
Tired Compaction
0-100

0-100

Leveled Compaction

Each level has N sorted runs (overlapped).

Compaction merges all sorted runs in one
level to create a new sorted run in the next
level.

Minimizes write amplification at the cost
of read and space amplification.

Each level is one sorted run.
Compaction into Ln merges data from Ln-1 into Ln.

Compaction into Ln rewrites data that was
previously merged into Ln.

Minimizes space amplification and read
amplification at the cost of write amplification.

13

Operations — Compaction Tiered + Leveled

MemTable “acs Tew
~“~‘ dCo,n
‘*--f’f’”’bn

levelO 0-100
levell | 0-100 | 0-100 |
| 0-100 | 0-100]| 0-100

» Less write amplification than leveled and less space amplification than tiered.
» More read amplification than leveled and more write amplification than tired.
> Itis flexible about the level at which the LSM tree switches from tiered to leveled.

15

Write Operation Summary

» Write log firstly, and write in memory. (Critical Path)
» Flush from memory to disk. (Write Stall)
» Compactions. (Write Amplification)
» Optimization
» Compaction Algorithm

» Client Operation & Internal Operation Tradeoff
» Cache...

memory

disk

LevelDB

L6 (ITB)

JOOQO0QU

16

FAST16’ WiscKey

» Decouple sorting and garbage collection

» Harness SSD’s internal parallelism for range queries
» Online and light-weight garbage collection

» Minimize I/O amplification and crash consistent

key

LSM-tree Value Log

17

WiscKey Range Query

> Parallel range query
> leverage parallel random reads of SSDs
» prefetch key-value pairs in advance
» detect a sequential pattern
» prefetch concurrently in background

Die Die Die Die
Channel Flash Channel

Figure 2: SSD Architecture: Internal parallelism in SSDs
creates opportunities for hardware-level isolation.

Throughput (MB/s)

600 - O Sequential /\ Rand-1thread X Rand-32threads
500 4 G -emmre [T LT a—— Q- e : %
400 4 R
300 4 . A
fx‘

200 - ’ AT
100 + x." ''''' A

O ¢ ----------- é'.‘ | 1) 1

1KB 4KB 16KB 64KB 256KB

Request size: 1KB to 256KB

Figure 3: Sequential and Random Reads on SSD. This
Sfigure shows the sequential and random read performance for

various request sizes on a modern SSD device. All requests are
issued to a 100-GB file on ext4.

18

WiscKey Garbage Collection

» Online and light-weight garbage collection
» append (ksize, vsize, key, value) in value log

» Remove LSM-tree log in WiscKey
» store head in LSM-tree periodically
» scan the value log from the head to recover

LSM-tree Value Log

19

Summary

> Designing Access Methods: The RUM Conjecture Kead Qgpacized

 Read, Update, Memory(Space) — Optimize Two
at the Expense of the Third

 Read Amplification vs Write Amplification vs

Space Amplification

RocksDB Timeline

2012

2013

2014

2015

2016

2017

2018

2019

2020

Fork from LevelDB
Add Multithreaded Compactions

Open Source, Serious Production Use Cases
Component Pluggability

Support Backups
MongoRocks (MongoDB engine) in production at Facebook

Support Transactions
Support Bulk Loading

MyRocks (MySQL engine) in production at Parse
Support DeleteRange()

Experimented caching on NVM

Rocksandra (Apache Cassandra engine) in production at Instagram
Start to optimize for disaggregated storage

Parallel /O within MultiGet()

Partial Support of user-defined timestamps

indexes
B-Tree Trie
Skiplist

Cracking
Adaptive structures
PDT Mewne Sparse Index

LSM
Bl Iter
Differential £37 oonz\f:)per’oximat

structures MaSM Bitmap indexes

Write Optimized Space Opftimized

Figure 1: Popular data structures in the RUM space.

> Initial Optimization Targets are Write Amplification
» Majority of use cases are bounded by SSD space

» Reducing CPU overheads is becoming more important for
efficiency

» Now working on disaggregated storage to achieve balanced
CPU and SSD usage

Thanks

