
Log-Structured Merge-Tree

Nope
May 29

Learn-Sys Group

Applications of LSM-Tree

❑ NoSQL

❖ BigTable

❖ HBase

❖ Cassandra

❑ Storage Engine

❖ LevelDB

❖ RocksDB

❖ MyRocks

2

Key-Value Store (KVS) has become a necessary infrastructure.

◆ Indexing, Caching (Redis, Memcached) B-Tree based, HASH based

◆ Storage System (Persistent Key-value Store)

3

Beginning of LSM-Tree

❑ 1992: The Design and Implementation of a Log-Structured File System (LSF)

➢ Out-of-place Updates (compared with FFS In-place Updates)

➢ Write Sequentially

➢ Garbage Collection

➢ …

❑ 1996: The Log-Structured Merge-Tree (LSM-tree)

➢ Out-of-place update

➢ Optimized for write / Sacrifice read

➢ Require data reorganization (merge/compaction)

➢ …

Modern Structure of LSM-Tree

4

❑ Structure

➢ Memory Component (Memtable)

➢ Disk Component (SSTable)

➢ Level 0

➢ Other Levels

➢ Log (WAL/MANIFEST)

❑ Operations

➢ Read (Point Query / Range Query)

➢ Write

• Memory Write

• Flush

• Compaction

➢ Delete is also Write. (Write tombstone)

Operations – Point Query

5

➢ Returns immediately when

something found

➢ Problems:

➢ Read Amplification:

• Files: (Worst Case) Search (N -

1 + files num of level-0) files.

• Inside the file

➢ Optimization

➢ Page cache/Block cache

➢ Bloom filter

➢ Other Index/Filter

Operations – Range Query

6

for (itr->Seek(23); itr->Valid(); itr->Next()) { if (itr-
>key() < 40) {
...

} else ...
}

➢ Must seek every sorted run

➢ Bloom filter not support range query

➢ Optimization

➢ Parallel Seeks

➢ Prefix bloom filter(RocksDB)

➢ Other Index

Operations – Simple Write

7

Operations – Simple Write

8

Operations – Simple Write

9

Operations – Simple Write

10

Flush/Persistent

Operations – Simple Write

11

Operations – Compaction Tiered vs Leveled

12

⚫ Each level has N sorted runs (overlapped).

⚫ Compaction merges all sorted runs in one

level to create a new sorted run in the next

level.

⚫ Minimizes write amplification at the cost

of read and space amplification.

⚫ Each level is one sorted run.

⚫ Compaction into Ln merges data from Ln-1 into Ln.

⚫ Compaction into Ln rewrites data that was

previously merged into Ln.

⚫ Minimizes space amplification and read

amplification at the cost of write amplification.

Operations – Compaction Tiered + Leveled

13

➢ Less write amplification than leveled and less space amplification than tiered.

➢ More read amplification than leveled and more write amplification than tired.

➢ It is flexible about the level at which the LSM tree switches from tiered to leveled.

Write Operation Summary

15

➢ Write log firstly, and write in memory. (Critical Path)

➢ Flush from memory to disk. (Write Stall)

➢ Compactions. (Write Amplification)

➢ Optimization

➢ Compaction Algorithm

➢ Client Operation & Internal Operation Tradeoff

➢ Cache…

FAST16’ WiscKey

16

➢ Decouple sorting and garbage collection

➢ Harness SSD’s internal parallelism for range queries

➢ Online and light-weight garbage collection

➢ Minimize I/O amplification and crash consistent

WiscKey Range Query

17

➢ Parallel range query

➢ leverage parallel random reads of SSDs

➢ prefetch key-value pairs in advance

➢ detect a sequential pattern

➢ prefetch concurrently in background

WiscKey Garbage Collection

18

➢ Online and light-weight garbage collection

➢ append (ksize, vsize, key, value) in value log

➢ Remove LSM-tree log in WiscKey

➢ store head in LSM-tree periodically

➢ scan the value log from the head to recover

Summary

19

➢ Designing Access Methods: The RUM Conjecture

• Read, Update, Memory(Space) – Optimize Two

at the Expense of the Third

• Read Amplification vs Write Amplification vs

Space Amplification

➢ Initial Optimization Targets are Write Amplification

➢ Majority of use cases are bounded by SSD space

➢ Reducing CPU overheads is becoming more important for

efficiency

➢ Now working on disaggregated storage to achieve balanced

CPU and SSD usage

Thanks

