ML for System

Jinming Hu 2021.6.5

Many slides from Tim Kraska

Brief intro to ML

- Supervised learning: inputs x to outputs y
- Classification: y is a categorical variable
- Regression: y is real-valued
 - This is more often used in learned index

Fundamental Building Blocks

B-Tree

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis: The Case for Learned Index Structures. SIGMOD Conference 2018: 489-504

id	date	first_name							
1000	2017-01-01	Hobart	Spracklin	hspracklin0@dailymotion.com	20565 High Crossing Plaza	56372	Minnesota	4405-6975-7285-5160	\$611.00
1001	2017-01-02	Billye	Binnion	bbinnion1@123-reg.co.uk	3698 Upham Point	20260	District of Columbia	3533-7150-7728-9850	\$244.00
1002	2017-01-02	Johann	Brockley	jbrockley2@bizjournals.com	23844 Artisan Place	98516	Washington	67597-1193-7985-5100	\$233.00
1003	2017-01-03	Artie	MacMenami	amacmenamin3@hao123.com	6276 Toban Trail	78759	Texas	3537-4829-6134-5000	\$210.00
1004	2017-01-03	Delilah	O'Currigan	docurrigan4@chron.com	86016 New Castle Avenue	72199	Arkansas	3555-2017-2226-5780	\$286.00
1005	2017-01-04	Gretta	Will	gwill5@yelp.com	0 Dottie Circle	68524	Nebraska	503844-1984-2085-5000	\$870.00
1006	2017-01-04	Gordon	Kirsopp	gkirsopp6@utexas.edu	64060 Scott Park	20370	District of Columbia	633332-1895-2414-5000	\$687.00
1007	2017-01-05	Bendick	Fagg	bfagg7@army.mil	94 Florence Hill	45440	Ohio	3528-9673-1815-8420	\$733.00
1008	2017-01-05	Dimitry	Boyet	dboyet8@sakura.ne.jp	35886 Golf Plaza	30066	Georgia	3576-6991-4041-3170	\$382.00
1009	2017-01-06	Ailsun	Beinke	abeinke9@si.edu	1 Badeau Place	46295	Indiana	56022-2011-8072-1400	\$854.00
1010	2017-01-07	Lou	Hallows	lhallowsa@theguardian.com	1 Twin Pines Junction	91125	California	5602-2364-4079-0250	\$150.00
1011	2017-01-09	Tiffani	Mathew	tmathewb@seattletimes.com	0456 Meadow Vale Lane	75260	Texas	6387-6943-8910-4580	\$313.00
1012	2017-01-09	Perl	Bridie	pbridiec@hubpages.com	07 Bluestem Junction	33124	Florida	3539-8662-2397-5880	\$558.00
1013	2017-01-09	Rosabelle	Blasik	rblasikd@delicious.com	7 Fairfield Pass	79699	Texas	5602-2297-6599-8560	\$941.00
1014	2017-01-10	Meggi	Belamy	mbelamye@ask.com	0995 Manufacturers Street	10170	New York	3557-5094-7405-8340	\$875.00
1015	2017-01-10	Tadio	Balderston	tbalderstonf@apache.org	80 Novick Road	75260	Texas	60485-3728-7119-9300	\$954.00
1016	2017-01-11	Gianina	Oxteby	goxtebyg@google.pl	72674 Fuller Avenue	89505	Nevada	4-0415-9268-2397	\$ 239.00
1017	2017-01-12	Brendan	Doody	bdoodyh@craigslist.org	87414 Golden Leaf Street	11480	New York	201-6348-4121-1314	\$308.00
1018	2017-01-13	Conway	Coombs	ccoombsi@blogger.com	2810 Oakridge Park	32859	Florida	3529-1514-0357-9120	\$ 60.00
1019	2017-01-14	Germaine	Bere	gberej@bravesites.com	82802 Oakridge Park	20041	District of Columbia	670961-0240-4054-9000	\$ 95.00
1020	2017-01-15	Davide	Tolcharde	dtolchardek@redcross.org	89 Continental Avenue	79165	Texas	5018-7748-4325-9510	\$137.00
1021	2017-01-16	Nigel	Artharg	narthargl@gizmodo.com	31 Mcbride Point	22301	Virginia	560225-6965-2870-0000	\$496.00
1022	2017-01-17	Rickard	Trenholm	rtrenholmm@cbslocal.com	93 Hoepker Parkway	70593	Louisiana	3541-5241-5383-9970	\$760.00
1023	2017-01-18	Juditha	Dwane	jdwanen@vk.com	7914 Eliot Lane	14276	New York	5456-4410-0914-3180	\$474.00
1024	2017-01-19	Susan	Ilden	sildeno@aol.com	25204 Huxley Road	21684	Maryland	3574-8586-6367-9920	\$ 83.00
1025	2017-01-20	Abbey	Triggle	atrigglep@google.com.au	47 Debra Pass	74184	Oklahoma	3538-6047-6315-7710	\$513.00
1026	2017-01-21	Zsazsa	Dunster	zdunsterq@nature.com	7 Gerald Alley	40576	Kentucky	3562-0325-7709-3490	\$952.00
1027	2017-01-22	Grantham	Friatt	gfriattr@seattletimes.com	774 Prairieview Circle	29225	South Carolina	3571-1171-9476-8780	\$942.00
1028	2017-01-22	Ross	Gaudin	rgaudins@samsung.com	3102 Loeprich Trail	68197	Nebraska	5108-7578-4665-2710	\$572.00
1029	2017-01-22	Aluino	Drover	adrovert@dagondesign.com	2717 Northridge Avenue	72199	Arkansas	670999-3171-8848-0000	\$318.00
1030	2017-01-23	Shurlock	Braker	sbrakeru@huffingtonpost.com	30783 Jenna Alley	80945	Colorado	6331106-1894-9878-0000	\$166.00
1031	2017-01-24	Glenda	Goodbody	ggoodbodyv@economist.com	720 Pierstorff Way	7522	New Jersey	36-0593-2719-1684	\$412.00
1032	2017-01-24	Rollin	Reddie	rreddiew@tinypic.com	09 Gina Park	65810	Missouri	4665-9188-1324-1040	\$383.00
1033	2017-01-26	Dorry	Jenks	djenksx@virginia.edu	1 Butterfield Road	85210	Arizona	3578-9195-0297-7730	\$636.00
1034	2017-01-26	Patti	Emby	nemhw@weather.com	26 Hoard Drive	91210	California	3585-8243-7506-2470	\$957.00

	date
	2017-01-01
	2017-01-02
I	2017-01-02
I	2017-01-03
I	2017-01-03
I	2017-01-04
I	2017-01-04
I	2017-01-05
I	2017-01-05
I	2017-01-06
I	2017-01-07
I	2017-01-09
I	2017-01-09
	2017-01-09
	2017-01-10
	2017-01-10
l	2017-01-11
	2017-01-12
ļ	2017-01-13
ļ	2017-01-14
Į	2017-01-15
Į	2017-01-16
ļ	2017-01-17
Į	2017-01-18
ļ	2017-01-19
ļ	2017-01-20
ļ	2017-01-21
ļ	2017-01-22
ļ	2017-01-22
ļ	2017-01-22
ļ	2017-01-23
ļ	2017-01-24
ļ	2017-01-24
	2017-01-26
1	2017-01-26

te 01-01 01-02 01-02 01-03 01-03 01-04 01-05 01-05 01-05 01-05 01-09 01-09	$\begin{array}{c} 01-09\\ 01-10\\ 01-11\\ 01-12\\ 01-13\\ 01-13\\ 01-14\\ 01-17\\ 01-12\\ 01-22\\ 01-22\\ 01-22\\ 01-22\\ 01-22\\ 01-22\\ 01-22\\ 01-24\\ 01-26\\ 01-26\\ 01-26\\ 01-28\\ 01$	$\begin{array}{c} 01-28\\ 01-29\\ 01-30\\ 01-30\\ 01-31\\ 01$
dat 2017-120177-12017-120177-1200177-1200177-1200177-1200177-1200177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-12000177-120000000000	2017-1 20	2017-1 20

date

B-Trees are also models (regression tree)

Key		
date date 2017-01-01 2017-01-02 2017-01-02 2017-01-03 2017-01-03 2017-01-03 2017-01-04 2017-01-04 2017-01-05 2017-01-05 2017-01-05 2017-01-10 2017-01-20 2017-01-20 2017-01-20 2017-01-20 2017-01-20 2017-01-20 2017-01-20 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06 2017-02-06	2017-11-27 2017-11-27 2017-11-27 2017-11-28 2017-11-28	

What Does This Mean

Adaptation To Application Data

id	date								
1000	2017-01-01	Hobart	Spracklin	hspracklin0@dailymotion.com	20565 High Crossing Plaza	56372	Minnesota	4405-6975-7285-5160	\$611.00
1001	2017-01-02	Billye	Binnion	bbinnion1@123-reg.co.uk	3698 Upham Point	20260	District of Columbia	3533-7150-7728-9850	\$244.00
1002	2017-01-02	Johann	Brockley	jbrockley2@bizjournals.com	23844 Artisan Place	98516	Washington	67597-1193-7985-5100	\$233.00
1003	2017-01-03	Artie	MacMenami	amacmenamin3@hao123.com	6276 Toban Trail	78759	Texas	3537-4829-6134-5000	\$210.00
1004	2017-01-03	Delilah	O'Currigan	docurrigan4@chron.com	86016 New Castle Avenue	72199	Arkansas	3555-2017-2226-5780	\$286.00
1005	2017-01-04	Gretta	Will	gwill5@yelp.com	0 Dottie Circle	68524	Nebraska	503844-1984-2085-5000	\$870.00
1006	2017-01-04	Gordon	Kirsopp	gkirsopp6@utexas.edu	64060 Scott Park	20370	District of Columbia	633332-1895-2414-5000	\$687.00
1007	2017-01-05	Bendick	Fagg	bfagg7@army.mil	94 Florence Hill	45440	Ohio	3528-9673-1815-8420	\$733.00
1008	2017-01-05	Dimitry	Boyet	dboyet8@sakura.ne.jp	35886 Golf Plaza	30066	Georgia	3576-6991-4041-3170	\$382.00
1009	2017-01-06	Ailsun	Beinke	abeinke9@si.edu	1 Badeau Place	46295	Indiana	56022-2011-8072-1400	\$854.00
1010	2017-01-07	Lou	Hallows	Ihallowsa@theguardian.com	1 Twin Pines Junction	91125	California	5602-2364-4079-0250	\$150.00
1011	2017-01-09	Tiffani	Mathew	tmathewb@seattletimes.com	0456 Meadow Vale Lane	75260	Texas	6387-6943-8910-4580	\$313.00
1012	2017-01-09	Perl	Bridie	pbridiec@hubpages.com	07 Bluestem Junction	33124	Florida	3539-8662-2397-5880	\$558.00
1013	2017-01-09	Rosabelle	Blasik	rblasikd@delicious.com	7 Fairfield Pass	79699	Texas	5602-2297-6599-8560	\$941.00
1014	2017-01-10	Meggi	Belamy	mbelamye@ask.com	0995 Manufacturers Street	10170	New York	3557-5094-7405-8340	\$875.00
1015	2017-01-10	Tadio	Balderston	tbalderstonf@apache.org	80 Novick Road	75260	Texas	60485-3728-7119-9300	\$954.00
1016	2017-01-11	Gianina	Oxteby	goxtebyg@google.pl	72674 Fuller Avenue	89505	Nevada	4-0415-9268-2397	\$239.00
1017	2017-01-12	Brendan	Doody	bdoodyh@craigslist.org	87414 Golden Leaf Street	11480	New York	201-6348-4121-1314	\$308.00
1018	2017-01-13	Conway	Coombs	ccoombsi@blogger.com	2810 Oakridge Park	32859	Florida	3529-1514-0357-9120	\$ 60.00
1019	2017-01-14	Germaine	Bere	gberej@bravesites.com	82802 Oakridge Park	20041	District of Columbia	670961-0240-4054-9000	\$ 95.00
1020	2017-01-15	Davide	Tolcharde	dtolchardek@redcross.org	89 Continental Avenue	79165	Texas	5018-7748-4325-9510	\$137.00
1021	2017-01-16	Nigel	Artharg	narthargl@gizmodo.com	31 Mcbride Point	22301	Virginia	560225-6965-2870-0000	\$496.00
1022	2017-01-17	Rickard	Trenholm	rtrenholmm@cbslocal.com	93 Hoepker Parkway	70593	Louisiana	3541-5241-5383-9970	\$760.00
1023	2017-01-18	Juditha	Dwane	jdwanen@vk.com	7914 Eliot Lane	14276	New York	5456-4410-0914-3180	\$474.00
1024	2017-01-19	Susan	Ilden	sildeno@aol.com	25204 Huxley Road	21684	Maryland	3574-8586-6367-9920	\$ 83.00
1025	2017-01-20	Abbey	Triggle	atrigglep@google.com.au	47 Debra Pass	74184	Oklahoma	3538-6047-6315-7710	\$513.00
1026	2017-01-21	Zsazsa	Dunster	zdunsterg@nature.com	7 Gerald Alley	40576	Kentucky	3562-0325-7709-3490	\$952.00

Adaptation To Application Data

Adaptation To Application Data

σ	5	30	318	30	8	60	୬୮୧	임영	11	17	13	17	112	110	귀엽	의연	2	21	12	23	5	512	20	200	30	18	31	32	33	34	33	8 5	3 8	398	6	41	42	43	4	4 I 4	키수	48	6	2	512	2 2	2 2		56	51	58	59	8	61	62	103	104	<u>وا</u> م	
	임	99	의역	김음	위	3	의은	위음	12	워	위	위	919	의	리는	위문	12	10	워	위	위	위	위	리우	리은	입음	12	10	워	위	위	읽을	위음	입음	워	읝	위	위	위	리는	위음	임음	[읚]	읚	위	리는	위문	위문	위엽	입음	15	[워	워	위	<u></u> 음(위	리	의음	•••

data_array[id - 1000]

Date

Does It Work? A First Attempt

State-Of-The-Art B-Tree

260ns

???

Does It Work? A First Attempt

State-Of-The-Art B-Tree

260ns

Challenges

Frameworks are not designed for nano-second execution

Overfitting can be good

desired

ML+System Co-Design

What model type should I use?

What model type should I use?

Whatever works!

- Often continuous functions
- Possible model types include neural nets, regression models, piece-wise linear functions, among other things
- Model-type can be auto-tuned
- Opens up a complete new toolbox of building data structures and algorithms

Overfitting is a Good Thing *The Last Mile Problem*

Recursive-Model Index (RMI)

2-Stage RMI with Linear Model
pos₀ = a₀ + b₀ * key
pos₁ = m₁[pos₀].a + m₁[pos₀].b * key
record = local-search(key, pos₁)

Hybrid RMI

Worst-Case Performance is the one of a B-Tree

Initial Results

TensorFlow

State-Of-The-Art B-Tree

>80,000ns

265ns 13MB

Learned Index

85ns 0.7MB

Learned Index

- The biggest advantage is memory size
 - These memory can be used to do other things!
- Also ML models can utilize more with the parallelizing computation, while B-Tree is essentially a lot of if-else

Tree

Michael Mitzenmacher: A Model for Learned Bloom Filters and Optimizing by Sandwiching. NeurIPS 2018: 462-471

Sorting

(a) CDF Model Pre-Sorts

Sorting

(a) CDF Model Pre-Sorts

(b) Compact & local sort

Initial Results

Goal: Reduce Conflicts

Hash Map - Results

	% Conflicts Hash Map	% Conflicts Model	Reduction
Map Data	35.3%	07.9%	77.5%
Web Data	35.3%	24.7%	30.0%
Log Normal	35.4%	25.9%	26.7%

25% - 70% Reduction in Hash-Map Conflicts

So when can we apply ML to system?

- When you need to make a decision that different decisions may lead to significantly different running time
 - By significantly, we mean that it is far more longer than a model prediction time
 - In this case, a classification model may be your friend
 - Bloom filter is one example, we will see an example from OSDI2020 later
- When you want to x to a ordering-mattered y
 - Regression model is your friend
 - Learned index, learned hashmap, learned sorting, Burbon@OSDI2020 are examples
- The penalty of misprediction is low
 - Sometimes we can combine with a conventional method to avoid misprediction

How can we apply ML?

- Particularly useful for read-only system
 - Levelfiles in LSMT
 - Some index for large-scale database for historical data(never change)
- Light and quick
 - We want the model be small and quick enough to plug in system
 - If there are update for learned index, then retraining is often required.
 So we want the training to be as fast as possible
- Formularize the problem to be easy for ML models
 - Use what(features) to predict what(target)?
 - Think about whether there are patterns in the data
 - Sometimes can combine conventional methods with ML
 - Recursive model index is an example

What models are good for system

• Classification:

- Logistic regression
- Neural networks(not that good)
- ...

• Regression:

- Linear regression
- Piece-wise linear regression
- Polynomial fitting
- Neural networks (not that good)

.

A case study: Linnos@OSDI 2020

Unpredictable Latency

Hao M, Toksoz L, Li N, et al. LinnOS: Predictability on Unpredictable Flash Storage with a Light Neural Network, OSDI2020

Agnostic!

Speculative execution

- Passively wait due to black-box

Learning! LinnOS

- Proactively infer the black-box

Lightweight neural network for per-I/O speed inference

Output labeling

Input features

Handling inaccuracy

Conclusion

- System is always about trade-off
- ML is also often about trade-off: computation vs accuracy
- Define your problem well, find a good trade-off