MapReduce: Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat Google, Inc.

Presented by Wenyan Li and Hao Feng

Motivation

- Problems
 - High network bandwidth
 - Multi-TB files(s)
 - Slow to process

- MapReduce provides:
 - Automatic parallelization and distribution
 - Simple API for programmers
 - Fault-tolerance
 - I/O scheduling
 - Status and monitoring

img source:https://www.youtube.com/watch?v=MAJ0aW5g17c

Execution overview

- User program tells master it wants to run a map reduce job
- Master assign workers based on where the files are stored
- Apply map functions to the file chunks
 - store results on local disk
- Call the user reduce function per key with the list of values for that key to aggregate the results

Programming model

Map = processing part of data

Map (in_key, in_value) -> list(out_key, intermediate_value)

Input key/value pair

Produces set of intermediate pairs

Reduce= Aggregation

Reduce (out_key, list(intermediate_value)) -> list(out_value)

Combines all intermediate values for a particular key

Produce merged output value

Example --- count word

- "Netflix":1

Detail --- Fault Tolerance

- Worker failure
 - Master detect failure periodically
 - Re-execute Map tasks
 - Re-execute in progress Reduce tasks
- Master failure
 - Single master -> Unlikely
 - Abort

Detail --- Locality

- Network bandwidth is a scarce resource
- Runs on GFS (64MB blocks, several replica)
- Map tasks scheduled so GFS input block replica are on same machine or same rack

Detail --- Combiner function

- Network bandwidth is a scarce resource
- Word counting example
 - Hundreds or thousands of records of the form <the, 1>
 - Merging the data before sent over the network <the, 100>

Detail --- Task Granularity

- How many Maps? How many Reduces?
- The more, the better
 - Minimizes time for fault recovery
 - Can pipeline shuffling with map execution
 - Dynamic load balancing
- In practice
 - Choose Map: task 16MB 64 MB (GFS block size)
 - Choose Reduce: a small multiple of the number of worker
 - 200,000 map/5000 reduce tasks w/ 2000 machines

Detail --- Backup tasks

- "Straggler" --- slow workers
 - Bad disk
 - Other jobs consuming resources
 - Weird things: cache disabled ?
- Solution: Near end of phase, backup tasks
 - Whichever one finishes first "wins"

Detail --- Skipping Bad Records

- Records cause deterministic crashes
 - Best solution is to debug & fix, but not always possible
- Solution: Detect and skip
 - If master sees two failures for same record

Experiments

- Grep
 - Scan 10¹⁰ 100-byte records to extract records matching a rare pattern (92K matching records)
- Sort
 - Sort 10¹⁰ 100-byte records (TB)

MR_Grep

- Locality optimization helps:
 - 1800 machines read 1 TB of data at peak of ~31 GB/s
 - Without this, rack switches would limit to 10 GB/s
- Startup overhead is significant for short jobs
 - propagation of the program to all worker machines

MR_Sort

- Backup tasks
- Failures

Authors' Conclusions

- restricting the programming model makes it easy
- network bandwidth is a scarce resource
- redundant execution for slow machines, failures and data loss.