
MapReduce: Simplified Data Processing
on Large Clusters
Jeff Dean, Sanjay Ghemawat

Google, Inc.

Presented by Wenyan Li and Hao Feng

Motivation

• Problems
• High network bandwidth
• Multi-TB files(s)
• Slow to process

• MapReduce provides:
• Automatic parallelization and distribution
• Simple API for programmers
• Fault-tolerance
• I/O scheduling
• Status and monitoring

img source:https://www.youtube.com/watch?v=MAJ0aW5g17c

Execution overview

- User program tells master it wants to run a map reduce job

- Master assign workers based on where the files are stored

- Apply map functions to the file chunks

- store results on local disk

- Call the user reduce function per key with the list of values

for that key to aggregate the results

M work items R work items

R = # partitions,
defined by the user

scheduler & coordinator
master

Programming model

Map = processing part of data
Map (in_key, in_value) -> list(out_key, intermediate_value)

Reduce= Aggregation
Reduce (out_key, list(intermediate_value)) -> list(out_value)

Produces set of intermediate pairsInput key/value pair

Combines all intermediate values for a particular key Produce merged output value

Example --- count word

Map worker-1
- “YouTube”: 1
- “Netflix”:1
- “CNN”:1
-“NBC”:1

Map worker-2
- “NBC”: 1
- “Netflix”:1

Reduce worker-1
- “YouTube”: 1
- “Netflix”:2

Reduce worker-2
- “CNN”: 1
- “NBC”:2

Map (word, 1) Reduce (word, total_count)

Parse data
output each word and a count (1)

Sort: sort by keys (words)
Reduce: Sum together counts each key (word)

Input words

“YouTube”
“Netflix”
“CNN”

“NBC”
“NBC”

“Netflix”
….

Detail --- Fault Tolerance

• Worker failure
• Master detect failure periodically

• Re-execute Map tasks

• Re-execute in progress Reduce tasks

• Master failure
• Single master -> Unlikely

• Abort

Detail --- Locality

• Network bandwidth is a scarce resource

• Runs on GFS (64MB blocks, several replica)

• Map tasks scheduled so GFS input block replica are on same machine
or same rack

Detail --- Combiner function

• Network bandwidth is a scarce resource

• Word counting example
• Hundreds or thousands of records of the form <the, 1>

• Merging the data before sent over the network <the, 100>

Detail --- Task Granularity

• How many Maps? How many Reduces?

• The more, the better
• Minimizes time for fault recovery

• Can pipeline shuffling with map execution

• Dynamic load balancing

• In practice
• Choose Map: task 16MB – 64 MB (GFS block size)

• Choose Reduce: a small multiple of the number of worker

• 200,000 map/5000 reduce tasks w/ 2000 machines

Detail --- Backup tasks

• “Straggler” --- slow workers
• Bad disk

• Other jobs consuming resources

• Weird things: cache disabled ?

• Solution: Near end of phase, backup tasks
• Whichever one finishes first "wins“

Detail --- Skipping Bad Records

• Records cause deterministic crashes
• Best solution is to debug & fix, but not always possible

• Solution: Detect and skip
• If master sees two failures for same record

Experiments

• Grep
• Scan 1010 100-byte records to extract records matching a rare pattern (92K

matching records)

• Sort
• Sort 1010 100-byte records (TB)

MR_Grep

• Locality optimization helps:
• 1800 machines read 1 TB of data at peak of ~31 GB/s

• Without this, rack switches would limit to 10 GB/s

• Startup overhead is significant for short jobs
• propagation of the program to all worker machines

MR_Sort

• Backup tasks

• Failures

Authors’ Conclusions

• restricting the programming model makes it easy

• network bandwidth is a scarce resource

• redundant execution for slow machines, failures and data loss.

