MapReduce: Simplified Data Processing
on Large Clusters

Jeff Dean, Sanjay Ghemawat
Google, Inc.

Presented by Wenyan Li and Hao Feng

Motivation

7 7\ \ cend function to procecs to
each cerver having the file

* Problems
* High network bandwidth = |/] 8= [
* Multi-TB files(s) = —_— \— —
* Slow to process \
O

Each server processes part of the data

* MapReduce provides:
* Automatic parallelization and distribution
e Simple API for programmers
* Fault-tolerance
 1/O scheduling
e Status and monitoring

img source:https://www.youtube.com/watch?v=MAJ0aW5g17c

Execution overview

User program tells master it wants to run a map reduce job
Master assign workers based on where the files are stored

Apply map functions to the file chunks

- store results on local disk

Call the user reduce function per key with the list of values

for that key to aggregate the results

User
Program

(1) fork -~ : .
C1) Lo (1) foik r|::![|,|rk

scheduler & coordinator

(2
(23 assign
._ . miap

&

split 0
SF]J'L !] __l:.'ir remobe read
sp]_i_L 7z —'MO {4 local write ’_‘_H_'_._,_...-r’f')
worker "
split 3 L1
split 4
Input Map Intermediate files
files phase (on local disks)

L AssEn reduce . .

(6] wrile
output
" -
worker file 0

@ output
file 1

Reduce Output
phase files

Programming model

Map = processing part of data
Map (in_key, in_value) -> list(out_key, intermediate value)

Input key/value pair Produces set of intermediate pairs

Reduce= Aggregation

Reduce (out_key, list(intermediate_value)) -> list(out_value)
Combines all intermediate values for a particular key Produce merged output value

Example --- count word

Map (word, 1) Reduce (word, total_count)

Input words
Sort: sort by keys (words)

Parse data
“YouTube” output each word and a count (1) Reduce: Sum together counts each key (word)
“Netflix”
“ ” » Map worker-1 » Reduce worker-1
CNN “ ”.
- “YouTube”: 1 _ “YouTube”: 1
”NBC” “« s,)
u“ ” - Netﬂlx 1 - ”NetfliX"ZZ
IL\'Ei?I) _“CNN”:1
etriXx “« ”,
-“NBC™:1 Reduce worker-2
-“CNN”: 1
- “NBC”:2

Map worker-2
- “NBC”: 1
- “Netflix”:1

Detail --- Fault Tolerance

* Worker failure
* Master detect failure periodically
* Re-execute Map tasks
* Re-execute in progress Reduce tasks

* Master failure

e Single master -> Unlikely
e Abort

Detail --- Locality

 Network bandwidth is a scarce resource
* Runs on GFS (64MB blocks, several replica)

* Map tasks scheduled so GFS input block replica are on same machine
or same rack

Detail --- Combiner function

 Network bandwidth is a scarce resource

* Word counting example
* Hundreds or thousands of records of the form <the, 1>
* Merging the data before sent over the network <the, 100>

Detail --- Task Granularity

* How many Maps? How many Reduces?

* The more, the better
* Minimizes time for fault recovery
* Can pipeline shuffling with map execution
* Dynamic load balancing

* |[n practice
* Choose Map: task 16 (MB — 64 MB (GFS block size)

* Choose Reduce: a small multiple of the number of worker
e 200,000 map/5000 reduce tasks w/ 2000 machines

20000

Detail --- Backup tasks

10000

5000 —

e “Straggler” --- slow workers 500
° Bad dISk Seconds
* Other jobs consuming resources 20000 -
* Weird things: cache disabled ? § 15000
~ 10000
£ som

* Solution: Near end of phase, backup tasks 0 i
500
* Whichever one finishes first "wins” Seconds

T [T
1000

Detail --- Skipping Bad Records

e Records cause deterministic crashes
* Best solution is to debug & fix, but not always possible

 Solution: Detect and skip
e |f master sees two failures for same record

Experiments

* Grep

* Scan 101°% 100-byte records to extract records matching a rare pattern (92K
matching records)

* Sort
« Sort 101Y 100-byte records (TB)

30000 —

MR _Grep

20000 —

10000 —

Input (MB/s)

0 T | T [T I T I T |
20 40 60 80 100
Seconds

* Locality optimization helps:
* 1800 machines read 1 TB of data at peak of ~¥31 GB/s
* Without this, rack switches would limit to 10 GB/s

 Startup overhead is significant for short jobs
e propagation of the program to all worker machines

MR _Sort

* Backup tasks

e Failures

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000 —
15000
10000

5000 —

0

ne

20000
15000 —
10000

5000 —

0

—
500

I
1000

T

20000 —
15000
10000

5000 —

0

500

—
1000

500
Seconds

T
1000

(a) Normal execution

T

20000 —
15000 —
10000 —

5000 —

Done

20000
15000 —
10000 —

5000 —

—T———7—
500 1000

20000
15000 —
10000 —

5000 —

1
500 1000

—— . :
500 1000

Seconds
(b) No backup tasks

20000
15000 —
10000 H

5000 —

0

Done

20000 4
15000 —
10000 H

5000

-
Y PR

—
500 1000

0

20000
15000 —
10000 —

5000

T

500 1000

0

T T T T T T

T
500
Seconds

(c) 200 tasks killed

T
1000

Authors’ Conclusions

* restricting the programming model makes it easy
* network bandwidth is a scarce resource
* redundant execution for slow machines, failures and data loss.

