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Introduction

⚫ Message transmission delay is not negligible

⚫ Physical clocks are not perfectly accurate

⚫ It is hard to synchronize physical clocks

We need define “happened before” relation 
without using physical clocks
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The partial ordering

Event 𝑎 happens before 𝑏 (i.e. 𝑎 → 𝑏) iff:

1. Event 𝑎 and 𝑏 are events in the same process, and 𝑎 comes 
before 𝑏

2. Event 𝑎 send a message by one process, and event 𝑏 is the 
receipt of the same message by another process.

3. If 𝑎 → 𝑏 and 𝑏 → 𝑐, then 𝑎 → 𝑐

Event 𝑎 and 𝑏 are concurrent (i.e. 𝑎 ∥ 𝑏) iff:

Neither 𝑎 → 𝑏 nor 𝑏 → 𝑎



Happens-before relation example

⚫ 𝑝1 → 𝑝2, 𝑞1 → 𝑞2, 𝑟1 → 𝑟2 due to 
process order

⚫ 𝑝1 → 𝑞2, 𝑞4 → 𝑟3 due to messages 𝑚1

and 𝑚2

⚫ 𝑝1 → 𝑞4, 𝑞1 → 𝑟3 due to transitivity

⚫ 𝑝3 ∥ 𝑞4, 𝑞5 ∥ 𝑟4
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Logical clocks

Clock Condition. For any events 𝑎, 𝑏

If 𝑎 → 𝑏, then 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩

C1. If 𝑎 and 𝑏 are events in process 𝑃𝑖, and 𝑎 happen before 𝑏, 
then 𝐶𝑖⟨𝑎⟩ < 𝐶𝑖⟨𝑏⟩

C2. If 𝑎 is the sending of a message by process 𝑃𝑖 and 𝑏 is the 
receipt of that message by process 𝑃𝑗, then 𝐶𝑖⟨𝑎⟩ < 𝐶𝑖⟨𝑏⟩



Logical clocks

Lamport Clock

IR1. Each process 𝑃𝑖 increments 𝐶𝑖 between any 
two successive events.

IR2. If event 𝑎 is the sending of a message 𝑚 by 
process 𝑃𝑖 , then the message 𝑚 contains a 
timestamp 𝑇𝑚 = 𝐶𝑖⟨𝑎⟩

Upon receiving a message 𝑚, process 𝑃𝑗 sets 𝐶𝑗
greater than or equal to its present value and 
greater than 𝑇𝑚

A B C

(1, 𝐴)

(2, 𝐴)

(3, 𝐴)

(2,𝑚1)

(3, 𝐵)

(4, 𝐵)

(4,𝑚2)

(1, 𝐶)

(5, 𝐶)



Logical clocks

Lamport Clock

IR1. Each process 𝑃𝑖 increments 𝐶𝑖 between any 
two successive events.

IR2. If event 𝑎 is the sending of a message 𝑚 by 
process 𝑃𝑖 , then the message 𝑚 contains a 
timestamp 𝑇𝑚 = 𝐶𝑖⟨𝑎⟩

Upon receiving a message 𝑚, process 𝑃𝑗 sets 𝐶𝑗
greater than or equal to its present value and 
greater than 𝑇𝑚

Property of this scheme:

⚫ If 𝑎 → 𝑏, then 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩

⚫ However, 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩ does not imply 𝑎 → 𝑏

⚫ It’s still a partial ordering 



Total ordering

Let denote 𝑁 𝑎 be the node  at which event 𝑎 occurred. 
Then the pair (𝐶 𝑎 , 𝑁 𝑎 ) uniquely identifies event 𝑎

Define a total order ≺ using Lamport timestamps:

𝑎 ≺ 𝑏 ⇔ 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩ ⋁ (𝐶⟨𝑎⟩ = 𝐶⟨𝑏⟩ ∧ 𝑁 𝑎 < 𝑁 𝑏 )



Logical clocks VS Relativity

𝑡 = 0

𝑡 = 1

𝑡 = 2

Event 𝑎: emit a light from the middle of the train 

Event 𝑏: the light reaches the front of the train

Event 𝑐: the light reaches the rear of the train

𝑎 happens before 𝑏 and 𝑐 due to causal relationship, but 
the order of 𝑏 and 𝑐 is relative 
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Distributed mutual exclusion problem

Problem definition

⚫ A process which has been granted the resource 
must release it before it can be granted to 
another process

⚫ Different requests for resource must be granted 
in the order in which they are made

⚫ If every process which is granted the resource 
eventually release it, then request is eventually 
granted
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Distributed mutual exclusion algorithm

State Machine 𝐶 × 𝑆 → 𝑆

Command 𝐶

⚫ request resource 𝑇𝑚: 𝑃𝑖 :  push 𝑇𝑚: 𝑃𝑖 into request queue

⚫ release resource 𝑃𝑖 : remove all 𝑃𝑖 messages on its request queue

State 𝑆

⚫ request queue

⚫ last timestamp from other processes



Distributed mutual exclusion algorithm

Assumptions

⚫ FIFO communication channels

⚫ Ensure delivery

⚫ Fully connected network



Distributed mutual exclusion algorithm

1. To request the resource: process 𝑃𝑖 send 𝑇𝑚: 𝑃𝑖 request resource to other 
process, and puts that message on its request queue.

2. When receive 𝑇𝑚: 𝑃𝑖 request resource, places it on its queue and sends 
timestamped ACK to 𝑃𝑖



Distributed mutual exclusion algorithm

3. To release the resource: remove all 𝑃𝑖 message on its request queue and 
send a 𝑃𝑖 release resource message to every other process

4. When receive 𝑃𝑖 release resource :  remove all 𝑃𝑖 message from its request 
queue



Distributed mutual exclusion algorithm

5. Conditions to grant resource to 𝑃𝑖 :
a. There is 𝑇𝑚: 𝑃𝑖 request resource message in queue which is ordered 

before any other requests
b. 𝑃𝑖 has received message from every other process timestamped later 

than 𝑇𝑚
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Anomalous behavior

Request A Request B

Internal system

External system
Issue Request B



Physical clock solution

⚫ If 𝑎 → 𝑏, then 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩

⚫ Single clock is accurate enough, 
𝑑𝐶𝑖 𝑡

𝑑𝑡
≈ 1 ± 𝜅

⚫ Clocks are synchronized, 𝐶𝑖 𝑡 − 𝐶𝑗 𝑡 < 𝜖

⚫ Minimum communication delay 𝜇 ≥
𝜖

1−𝜅


