Time, Clocks, and the Ordering of
Events in a Distributed System

Junchen Li Yi Zhang

Introduction

my: (“This paper is interesting”)
my: (“Yes, itis")
What will C see?

https:.//www.cl.cam.ac.uk/teaching/2021/ConcDisSys/

Introduction

® Message transmission delay is not negligible

X ® Physical clocks are not perfectly accurate
my

® |t s hard to synchronize physical clocks

BN
We need define “happened before” relation

without using physical clocks

mq: (1 ,“This paper is interesting”)
my: (tz,“YeS, It iS”)

What will C see?

https:.//www.cl.cam.ac.uk/teaching/2021/ConcDisSys/

The partial ordering

Event a happens before b (i.e. a = b) iff:

1. Event a and b are events in the same process, and a comes
before b

2. Event a send a message by one process, and event b is the
receipt of the same message by another process.

3. fa—->bandb —c, thena - c

Event a and b are concurrent (i.e. a |l b) iff:

Neithera —» b norb - a

Happens-before relation example

® p, 2Py, g1 qz, 1 21 dueto
process order

process P
process Q
process R

® p, = q,, q, — 13 due to messages my
and m,

® p, > g4, q1 — 73 due to transitivity

® p3llgy gsllim

Logical clocks

Clock Condition. For any events a, b
If a = b, then C(a) < C(b)

Cl.If a and b are events in process P;, and a happen before b,
then Ci{a) < C;(b)

C2. If a is the sending of a message by process P; and b is the
receipt of that message by process P;, then Ci{a) < C;(b)

Logical clocks

Lamport Clock

A B C
IR1. Each process P; increments C; between any
two successive events. (1,4) (2,my) ® (1,0)
(2, 4)
IR2. If event a is the sending of a message m by (3,B)
process P; , then the message m contains a
timestamp T,,, = Ci{a) (3,4) ¢ (4,B) \ c
(41 mZ) (’)
Upon receiving a message m, process P; sets (;

greater than or equal to its present value and
greater than Tpy,

Logical clocks

Lamport Clock

IR1. Each process P; increments C; between any
two successive events.

IR2. If event a is the sending of a message m by
process P; , then the message m contains a
timestamp T,,, = Ci{a)

Upon receiving a message m, process P; sets C;
greater than or equal to its present value and
greater than T,

Property of this scheme:
® [fa— b, then C{a) < C(b)
® However, C{a) < C(b) does not imply a = b

® |t's still a partial ordering

Total ordering

Let denote N(a) be the node at which event a occurred.
Then the pair (C(a), N(a)) uniquely identifies event a

Define a total order < using Lamport timestamps:

a<b e Cla) < C(b)V (Cla) = C(b) AN(a) < N(b))

Logical clocks VS Relativity

t=0 Event a: emit a light from the middle of the train
Event b: the light reaches the front of the train
P =1 ——> \ Event c: the light reaches the rear of the train
a happens before b and ¢ due to causal relationship, but
the order of b and c is relative
L

https:.//www.cl.cam.ac.uk/teaching/2021/ConcDisSys/

Distributed mutual exclusion problem

Problem definition

® A process which has been granted the resource
must release it before it can be granted to
another process

® Different requests for resource must be granted
in the order in which they are made

® |f every process which is granted the resource
eventually release it, then request is eventually
granted

Central scheduling

process
A B C
\""1
l
t3
ms
my t4-
my: (t1, "Request resource for A”)
m,: (t;, “Send a message to B”)
ms: (t3, "Request resource for B”)
my: (t4, “Grant resource to B”)

Distributed mutual exclusion algorithm

State MachineC XS - §

Command C

® request resource Ti,: P; . push Ty, P; Into request queue

® release resource P; : remove all P; messages on its request queue
State S

® request queue

® [ast timestamp from other processes

Distributed mutual exclusion algorithm

Assumptions
® FFO communication channels
® Ensure delivery

® Fully connected network

Distributed mutual exclusion algorithm

1. To request the resource: process P; send T,,: P; request resource to other
process, and puts that message on its request queue.

2. When receive Ty,: P; request resource, places it on its queue and sends
timestamped ACK to P;

Distributed mutual exclusion algorithm

3. To release the resource: remove all P; message on its request queue and
send a P; release resource message to every other process

4. When receive P; release resource : remove all P; message from its request
queue

Distributed mutual exclusion algorithm

5. Conditions to grant resource to P; :
a. Thereis T;,: P; request resource message in queue which is ordered
before any other requests
b. P; has received message from every other process timestamped later
than T,

Example

PO

Example

PO

Example

PO

-1:PO

Example

PO

-1:PO

PO

P1

P2

Example

PO | -1:PO
PO P1 P2
-1 -1 -1

Example

PO | -1:PO

PO P1 P2
-1 -1 -1
P1 | -1:PO

PO P1 P2
-1 -1 -1
P2 | -1:PO

PO P1 P2
-1 -1 -1

Example

PO | -1:PO

PO P1 P2
-1 -1 -1
P1 | -1:PO

PO P1 P2
-1 -1 -1
P2 | -1:PO

PO P1 P2
-1 -1 -1

PO

P1

P2

Example

PO | -1:PO

PO P1 P2
-1 -1 -1
P1|-1:P0 |O:P1

PO P1 P2
-1 -1 -1
P2 | -1:P0

PO P1 P2
-1 -1 -1

PO

P2

EXampIe

PO | -

0:P1

1:PO

P2

PO

P1

P1

0:P1

-1:PO

PO

P1

-1:PO

P2

PO

PO

P2

EXampIe

PO | -

1:PO

0:P1

P2

PO

P1

P1

0:P1

-1:PO

PO

P1

-1:PO

0:P1

P2

PO

P1

PO

P2

EXampIe

PO | -

0:P1

1:PO

P2

PO

P1

P1

0:P1

-1:PO

1

PO i

-1:PO

0:P1

P2

PO

P1

PO

P2

Example

Z

P2

P2

-1:PO | O:P1

P1

P2

PO

PO

-1:PO | O:P1

P1

P2

P1

PO

-1:PO [O:P1

P1

P2

PO

Example

(]

3
&
12

P2

PO | O:P1

P2

P1

PO

-1:PO | O:P1

P1

P2

P1

P2

PO

-1:PO [O:P1

P1

P2

PO

Example

LO
<
4

3
&
12

P2

PO | O:P1

P2

P1

PO

P110:P1

P2

P1

P2

PO

-1:PO [O:P1

P1

P2

PO

Example

LO
<
4

3
&
12

P1
P2

PO | O:P1

P2

P1

PO

P2

PO

P110:P1

P1

P2 | 0:P1

PO

Anomalous behavior

Request A Request B
il 1

VARNAN

Issue Request B
External system

%

Physical clock solution

® |[fa— b, then C{a) < C(b)

. . dc;(t
® Single clock is accurate enough, d‘t()~ 1 + K

® Clocks are synchronized, |Ci(t) — Cj(t)| <€

.o . . €
® Minimum communication delay u = T

