
Time, Clocks, and the Ordering of
Events in a Distributed System

Junchen Li Yi Zhang

Introduction

A B C

𝑡1

𝑡2

𝑚1

𝑚1

𝑚2
𝑚2

𝑚1: (“This paper is interesting”)

𝑚2: (“Yes, it is”)

What will C see?

https://www.cl.cam.ac.uk/teaching/2021/ConcDisSys/

Introduction

⚫ Message transmission delay is not negligible

⚫ Physical clocks are not perfectly accurate

⚫ It is hard to synchronize physical clocks

We need define “happened before” relation
without using physical clocks

A B C

𝑡1

𝑡2

𝑚1

𝑚1

𝑚2
𝑚2

What will C see?

𝑚1: (𝑡1 ,“This paper is interesting”)

𝑚2: (𝑡2,“Yes, it is”)

https://www.cl.cam.ac.uk/teaching/2021/ConcDisSys/

The partial ordering

Event 𝑎 happens before 𝑏 (i.e. 𝑎 → 𝑏) iff:

1. Event 𝑎 and 𝑏 are events in the same process, and 𝑎 comes
before 𝑏

2. Event 𝑎 send a message by one process, and event 𝑏 is the
receipt of the same message by another process.

3. If 𝑎 → 𝑏 and 𝑏 → 𝑐, then 𝑎 → 𝑐

Event 𝑎 and 𝑏 are concurrent (i.e. 𝑎 ∥ 𝑏) iff:

Neither 𝑎 → 𝑏 nor 𝑏 → 𝑎

Happens-before relation example

⚫ 𝑝1 → 𝑝2, 𝑞1 → 𝑞2, 𝑟1 → 𝑟2 due to
process order

⚫ 𝑝1 → 𝑞2, 𝑞4 → 𝑟3 due to messages 𝑚1

and 𝑚2

⚫ 𝑝1 → 𝑞4, 𝑞1 → 𝑟3 due to transitivity

⚫ 𝑝3 ∥ 𝑞4, 𝑞5 ∥ 𝑟4

𝑚1

𝑚2

Logical clocks

Clock Condition. For any events 𝑎, 𝑏

If 𝑎 → 𝑏, then 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩

C1. If 𝑎 and 𝑏 are events in process 𝑃𝑖, and 𝑎 happen before 𝑏,
then 𝐶𝑖⟨𝑎⟩ < 𝐶𝑖⟨𝑏⟩

C2. If 𝑎 is the sending of a message by process 𝑃𝑖 and 𝑏 is the
receipt of that message by process 𝑃𝑗, then 𝐶𝑖⟨𝑎⟩ < 𝐶𝑖⟨𝑏⟩

Logical clocks

Lamport Clock

IR1. Each process 𝑃𝑖 increments 𝐶𝑖 between any
two successive events.

IR2. If event 𝑎 is the sending of a message 𝑚 by
process 𝑃𝑖 , then the message 𝑚 contains a
timestamp 𝑇𝑚 = 𝐶𝑖⟨𝑎⟩

Upon receiving a message 𝑚, process 𝑃𝑗 sets 𝐶𝑗
greater than or equal to its present value and
greater than 𝑇𝑚

A B C

(1, 𝐴)

(2, 𝐴)

(3, 𝐴)

(2,𝑚1)

(3, 𝐵)

(4, 𝐵)

(4,𝑚2)

(1, 𝐶)

(5, 𝐶)

Logical clocks

Lamport Clock

IR1. Each process 𝑃𝑖 increments 𝐶𝑖 between any
two successive events.

IR2. If event 𝑎 is the sending of a message 𝑚 by
process 𝑃𝑖 , then the message 𝑚 contains a
timestamp 𝑇𝑚 = 𝐶𝑖⟨𝑎⟩

Upon receiving a message 𝑚, process 𝑃𝑗 sets 𝐶𝑗
greater than or equal to its present value and
greater than 𝑇𝑚

Property of this scheme:

⚫ If 𝑎 → 𝑏, then 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩

⚫ However, 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩ does not imply 𝑎 → 𝑏

⚫ It’s still a partial ordering

Total ordering

Let denote 𝑁 𝑎 be the node at which event 𝑎 occurred.
Then the pair (𝐶 𝑎 , 𝑁 𝑎) uniquely identifies event 𝑎

Define a total order ≺ using Lamport timestamps:

𝑎 ≺ 𝑏 ⇔ 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩ ⋁ (𝐶⟨𝑎⟩ = 𝐶⟨𝑏⟩ ∧ 𝑁 𝑎 < 𝑁 𝑏)

Logical clocks VS Relativity

𝑡 = 0

𝑡 = 1

𝑡 = 2

Event 𝑎: emit a light from the middle of the train

Event 𝑏: the light reaches the front of the train

Event 𝑐: the light reaches the rear of the train

𝑎 happens before 𝑏 and 𝑐 due to causal relationship, but
the order of 𝑏 and 𝑐 is relative

https://www.cl.cam.ac.uk/teaching/2021/ConcDisSys/

Distributed mutual exclusion problem

Problem definition

⚫ A process which has been granted the resource
must release it before it can be granted to
another process

⚫ Different requests for resource must be granted
in the order in which they are made

⚫ If every process which is granted the resource
eventually release it, then request is eventually
granted

𝑡3
𝑚3

A B C

𝑡1

𝑡2

𝑚1

𝑚2

𝑡4

Central scheduling
process

𝑚4

𝑚1: (𝑡1, “Request resource for A”)

𝑚2: (𝑡2, “Send a message to B”)

𝑚3: (𝑡3, “Request resource for B”)

𝑚4: (𝑡4, “Grant resource to B”)

Distributed mutual exclusion algorithm

State Machine 𝐶 × 𝑆 → 𝑆

Command 𝐶

⚫ request resource 𝑇𝑚: 𝑃𝑖 : push 𝑇𝑚: 𝑃𝑖 into request queue

⚫ release resource 𝑃𝑖 : remove all 𝑃𝑖 messages on its request queue

State 𝑆

⚫ request queue

⚫ last timestamp from other processes

Distributed mutual exclusion algorithm

Assumptions

⚫ FIFO communication channels

⚫ Ensure delivery

⚫ Fully connected network

Distributed mutual exclusion algorithm

1. To request the resource: process 𝑃𝑖 send 𝑇𝑚: 𝑃𝑖 request resource to other
process, and puts that message on its request queue.

2. When receive 𝑇𝑚: 𝑃𝑖 request resource, places it on its queue and sends
timestamped ACK to 𝑃𝑖

Distributed mutual exclusion algorithm

3. To release the resource: remove all 𝑃𝑖 message on its request queue and
send a 𝑃𝑖 release resource message to every other process

4. When receive 𝑃𝑖 release resource : remove all 𝑃𝑖 message from its request
queue

Distributed mutual exclusion algorithm

5. Conditions to grant resource to 𝑃𝑖 :
a. There is 𝑇𝑚: 𝑃𝑖 request resource message in queue which is ordered

before any other requests
b. 𝑃𝑖 has received message from every other process timestamped later

than 𝑇𝑚

Example

P0

Example

P0

Example

P0 -1:P0

Example

P0

P0 P1 P2

-1:P0

Example

P0

P0 P1 P2

-1 -1 -1

-1:P0

Example

P0

P0 P1 P2

-1 -1 -1

-1:P0

P1

P0 P1 P2

-1 -1 -1

-1:P0

P2

P0 P1 P2

-1 -1 -1

-1:P0

Example

P0

P1

P2

P0

P0 P1 P2

-1 -1 -1

-1:P0

P1

P0 P1 P2

-1 -1 -1

-1:P0

P2

P0 P1 P2

-1 -1 -1

-1:P0

0

Example

P0

P1

P2

P0

P0 P1 P2

-1 -1 -1

-1:P0

P1

P0 P1 P2

-1 -1 -1

-1:P0 0:P1

P2

P0 P1 P2

-1 -1 -1

-1:P0

0

Example

P0

P1

P2

P0

P0 P1 P2

-1 0 -1

-1:P0 0:P1

P1

P0 P1 P2

-1 -1 -1

-1:P0 0:P1

P2

P0 P1 P2

-1 -1 -1

-1:P0

1

Example

P0

P1

P2

P0

P0 P1 P2

-1 0 -1

-1:P0 0:P1

P1

P0 P1 P2

-1 -1 -1

-1:P0 0:P1

P2

P0 P1 P2

-1 0 -1

-1:P0 0:P1

1

0

1

1

Example

P0

P1

P2

P0

P0 P1 P2

-1 0 -1

-1:P0 0:P1

P1

P0 P1 P2

2 -1 -1

-1:P0 0:P1

P2

P0 P1 P2

-1 0 -1

-1:P0 0:P1

0

1

3

2

1

Example

P0

P1

P2

P0

P0 P1 P2

-1 0 -1

-1:P0 0:P1

P1

P0 P1 P2

2 -1 2

-1:P0 0:P1

P2

P0 P1 P2

-1 0 -1

-1:P0 0:P1

0

1

3

2

2

4

1

Example

P0

P1

P2

P0

P0 P1 P2

-1 0 -1

0:P1

P1

P0 P1 P2

2 -1 2

-1:P0 0:P1

P2

P0 P1 P2

-1 0 -1

-1:P0 0:P1

0

1

3

2

2

4

3

1

Example

P0

P1

P2

P0

P0 P1 P2

-1 0 -1

0:P1

P1

P0 P1 P2

3 -1 2

0:P1

P2

P0 P1 P2

-1 0 -1

-1:P0 0:P1

0

1

3

2

2

4

3

5

1

Example

P0

P1

P2

P0

P0 P1 P2

-1 0 -1

0:P1

P1

P0 P1 P2

3 -1 2

0:P1

P2

P0 P1 P2

-1 0 3

0:P1

0

1

3

2

2

4

3

5

4

Anomalous behavior

Request A Request B

Internal system

External system
Issue Request B

Physical clock solution

⚫ If 𝑎 → 𝑏, then 𝐶⟨𝑎⟩ < 𝐶⟨𝑏⟩

⚫ Single clock is accurate enough,
𝑑𝐶𝑖 𝑡

𝑑𝑡
≈ 1 ± 𝜅

⚫ Clocks are synchronized, 𝐶𝑖 𝑡 − 𝐶𝑗 𝑡 < 𝜖

⚫ Minimum communication delay 𝜇 ≥
𝜖

1−𝜅

