
SYMBOLIC EXECUTION
YONGKANG MENG

PROGRAM
ANALYSIS
TOOL

• dynamic program analysis tool: needs to run the
program binary

• gdb valgrind

• static program analysis tool can analyze the program
without running it, usually only needs source code

• pylint,clang-tidy, clang-format

• symbolic execution tool also belongs to static
program analysis

TESTING: PAIN POINT IN PRODUCTION
DEVELOPMENT

• We test because we want to verify our function / component works well and find bugs

• When writing unit test / regression test, we put most of our effort on “make functions
work well / return expected type when it gets called with expected parameters”

• We also mock some dummy error case in UT which everyone is smart enough not to
trigger them

• However we could barely imagine how could a bug break the system until it occurs

• Tons of assertion – never works when running in production with release build

• Poor UT code coverage

SYMBOLIC EXECUTION

• Walk through all possible reachable branches of a program

• Warns you when there is a possible assertion failure or any dangerous
operations(dereferencing a null pointer, divided by 0)

• Auto-generate high coverage unit test

• Does not even requires to run the program

OVERVIEW

JC King, CACM 1976.

Key idea: generalize testing by using
unknown symbolic variables in evaluation

Symbolic values, not concrete data

For each condition the analyzer will try to
fork a new working flow

STATE DEFINITION

STATE
DEFINITION

A symbolic execution state
comprises of
• The statement that going to be

executed
• A mapping (association) between

symbolic variable and program
variable

• A constraints set that must be met
if we need to execute till there

STATE TRANSITION

KEY CONCEPTS OF SYMBOLIC EXECUTION

• state

• constraints

• constraints solver (SMT, SAT)

• query

QUERY

• Figure out if the path condition is satisfiable

• Is array access a[i] out of bounds?

• Generate concrete inputs that execute the same paths

• Will this divide operation cause zero-division error?

SYMBOLIC EXECUTION

• Selects a state to run and then symbolically execute a single instruction in the context of
that state. This loop continues until there are no states remaining, or a user-defined
timeout is reached.

• For each conditional statement there will be an exponential increase of number of states,
NP question

CHALLENGES

• Path Explosion

Code example: for(int i = 0; i < get_number_from_terminal(); i++)

• Constraint Solving

• Environment mocking

PATH EXPLOSION

• Early branch prune

• Customized searching algorithm: random path selection and coverage-optimized search

• Why these 2 algorithms work?

CONSTRAINT SOLVING

• Current constraint solver can only support simple, linear constraints set

• We should see constraint solver as a black box and do optimization outside it

• What does KLEE do?

KLEE

• Execution Generated Testing: add concrete values to symbolic execution progress

• Expression Rewriting

• Implied Value Concretization

Example: (x + 1 == 10) - > x == 9

KLEE

• constraint independence

• Given the constraint set {i < j, j < 20, k > 0}, a query of whether i = 20 just requires the
first two constraints

• Counter-example cache (incremental solving)

• In KLEE all query results are stored in a cache that maps constraint sets to concrete
variable assignments (or a special No solution flag if the constraint set is unsatisfiable)

COUNTER-EXAMPLE CACHE

• Historical query result: (x + y < 10) ^ (x > 5) => {x = 6, y = 3}

• Subset query: (x + y < 10)

• Superset query: (x + y < 10) ^ (x > 5) ^ (y > 2): Highly possible that the solution also works
here

• For negative result: when a subset of a constraint set has no solution, then neither does the
original constraints set. Adding constraints to an unsatisfiable constraint set cannot make it
satisfiable.

• Special design: derived from the UBTree structure of Hoffmann and Hoehler, can search for
superset and subset quickly.

BUT WHAT IF ALL THESE CAN NOT HELP US OUT

• KLEE: give up the state, goes to other state for searching

• Symbolic execution supporting concolic testing: try with a random ‘concrete input’

• That’s why we can not reach 100% coverage rate even if each line is reachable

ENVIRONMENT MOCKING

• array

• memory object

• network

• lib function without source code

• system call

• choice: mock at lib level or system call level

MOCK LIB
FUNCTIONS

KLEE PERFORMANCE

SPECIAL USAGE:
REGRESSION
TEST

FOLLOW-UP PAPER/PROJECTS

• S2E: based on KLEE, integrated with qemu, implements ‘selective running’

• A survey of Symbolic Execution Techniques

• Symbolic Execution for Software Testing:Three Decades Later

• https://xiongyingfei.github.io/SA/2020/main.htm (Peking University Software Analysis)

https://xiongyingfei.github.io/SA/2020/main.htm

THANK YOU

