SYMBOLIC EXECUTION

NNNNNNNNNNN

PROGRAM * dynamic program analysis tool: needs to run the
ANALYSIS program binary
TOOL * gdb valgrind

* static program analysis tool can analyze the program

without running it, usually only needs source code
* pylint,clang-tidy, clang-format

* symbolic execution tool also belongs to static

program analysis

TESTING: PAIN POINT IN PRODUCTION
DEVELOPMENT

* We test because we want to verify our function / component works well and find bugs

* When writing unit test / regression test, we put most of our effort on “make functions
work well / return expected type when it gets called with expected parameters”

* We also mock some dummy error case in UT which everyone is smart enough not to
trigger them

* However we could barely imagine how could a bug break the system until it occurs

* Tons of assertion — never works when running in production with release build

* Poor UT code coverage

SYMBOLIC EXECUTION

Walk through all possible reachable branches of a program

Warns you when there is a possible assertion failure or any dangerous
operations(dereferencing a null pointer, divided by 0)

Auto-generate high coverage unit test

Does not even requires to run the program

JC King, CACM 1976.

Key idea: generalize testing by using

OVERVIEW M unknown symbolic variables in evaluation

Symbolic values, not concrete data

For each condition the analyzer will try to

fork a new working flow

STATE DEFINITION

1. void foobar(int a, int b) {
2y int x =1, vy = 0;

3. if (a !'= 09) {

4. S S

9 if (b == 0)

6. X = 2%x(a+b);

y 4% }

8. assert(x=y != 0);

9.

¥

Warm-up example: Which values of a and b make the assert fail?

o ={ar» ag,brr ap} T=true

2.

intx=1,y=0

g =0

o={arr ag,brr ap, x> 1,y 0} 7 = true

a, #0 B

3. if (a != 0)

£

A\ 4
o ={a+r ag,brr ap, x> 1,y > 0}

D
8. assert(x-y != 0)

T=0,=0

o= {a oy, b—

ap, x> Ly— 0} =0, #0

C
4. y = 3+x

Y
[1-0=0A0, =0+ false j

ap #0

c={a—ag,b—ap,z—=1y—4} T=a, #0

ap =0
= 5. if (b == 0)

c={a—agb—aprz—=1ly—4} T=0a, #0Aa, =0

6. x = 2*(a+b)

s # 0A oy

-
"

0

Yy
o={arag,brap,z— 1y 4} m=a, #0Aap #0

G
8. assert(x-y != 0)

({m e (| A et DA o D e falne j

{a— ag,b— ay, = 2(a, +),y — 4}

o

8.

assert(x-y != 0)

[2(0“ +ap)—4=0A0a #0Ap = OGf . =2ANoy =0 ERR()R)]

Fig. 2. Symbolic execution tree of function foobar given in Figure 1. Each execution state, labeled with an
upper case letter, shows the statement to be executed, the symbolic store o, and the path constraints x

Leaves are evaluated against the condition in the assert statement.

A symbolic execution state

comprises of

STATE * The statement that going to be
DEFINITION executed

* A mapping (association) between
symbolic variable and program
variable

* A constraints set that must be met
if we need to execute till there

STATE TRANSITION

Depending on stmt, the symbolic engine changes the state as follows:

e The evaluation of an assignment x = e updates the symbolic store o by associating x with
a new symbolic expression es. We denote this association with x +— es, where e is obtained
by evaluating e in the context of the current execution state and can be any expression
involving unary or binary operators over symbols and concrete values.

e The evaluation of a conditional branch i fe then s;,,. else sfqs. affects the path constraints
r. The symbolic execution is forked by creating two execution states with path constraints
Ttrue and Trqlse, respectively, which correspond to the two branches: 7,4, = 7 A €5 and
Tfalse = T A —es, Where eg 1s a symbolic expression obtained by evaluating e. Symbolic
execution independently proceeds on both states.

e The evaluation of a jump goto s updates the execution state by advancing the symbolic
execution to statement s.

KEY CONCEPTS OF SYMBOLIC EXECUTION

* state

* constraints

* constraints solver (SMT, SAT)

* query

QUERY

Figure out if the path condition is satisfiable

Is array access a[i] out of bounds?

Generate concrete inputs that execute the same paths

Will this divide operation cause zero-division error?

SYMBOLIC EXECUTION

* Selects a state to run and then symbolically execute a single instruction in the context of
that state. This loop continues until there are no states remaining, or a user-defined
timeout is reached.

* For each conditional statement there will be an exponential increase of number of states,

NP question

CHALLENGES

* Path Explosion

Code example: for(int i = 0;i < get_number_from_terminal(); i++)

 Constraint Solving

* Environment mocking

PATH EXPLOSION

* Early branch prune

* Customized searching algorithm: random path selection and coverage-optimized search

* Why these 2 algorithms work?

CONSTRAINT SOLVING

* Current constraint solver can only support simple, linear constraints set

* We should see constraint solver as a black box and do optimization outside it

* What does KLEE do?

KLEE

* Execution Generated Testing: add concrete values to symbolic execution progress

* Expression Rewriting

* Implied Value Concretization

Example: (x + | == 10) - > x ==

KLEE

* constraint independence

* Given the constraint set {i < j,j < 20, k > 0}, a query of whether i = 20 just requires the

first two constraints
* Counter-example cache (incremental solving)

* In KLEE all query results are stored in a cache that maps constraint sets to concrete

variable assighments (or a special No solution flag if the constraint set is unsatisfiable)

COUNTER-EXAMPLE CACHE

* Historical query result: (x +y < 10) A (x > 5) => {x = 6,y = 3}
* Subset query: (x +y < |0)

* Superset query: (x +y < [0) A (x > 5) A (y > 2): Highly possible that the solution also works
here

* For negative result: when a subset of a constraint set has no solution, then neither does the
original constraints set. Adding constraints to an unsatisfiable constraint set cannot make it
satisfiable.

* Special design: derived from the UBTree structure of Hoffmann and Hoehler, can search for
superset and subset quickly.

BUT WHAT IF ALL THESE CAN NOT HELP US OUT

» KLEE: give up the state, goes to other state for searching

* Symbolic execution supporting concolic testing: try with a random ‘concrete input’

* That’s why we can not reach 100% coverage rate even if each line is reachable

ENVIRONMENT MOCKING

° array

* memory object

* network

* |lib function without source code

* system call

* choice: mock at lib level or system call level

. ssize_t read(int fd, void *buf, size_t count) {
if (is_invalid(fd)) {
errno = EBADF;
return —1;

}

struct klee_fd *f = &fds[fd];
if (is_concrete_file(f)) {

M OC K LI B :;lt(rr ; p_r(;a)d(f—>real_fd, buf, count, f—>off);
FUNCTIONS =Y

} else {

/* sym files are fixed size: don’t read beyond the end. */
if (f—>off >= f—>size)
return O;
count = min(count, f—>size — f—>off);
memcpy(buf, f—>file_data + f—>off, count);
f—>off += count;
return count;

COREUTILS BUSYBOX
Coverage KLEE | Devel. KLEE | Devel.
(w/o lib) tests tests tests tests
100% 16 1 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% S 15 2 7
50-60% - 10 - 4
KLEE PERFORMANCE .
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30
Overall cov. 84.5% | 67.7% 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% || 97.5% | 58.9%
Ave cov/App 90.9% | 68.4% 93.5% | 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges for KLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and

SPECIAL USAGE: oo
REGRESSION iy & =) 7 1 power of o
TEST

else
return x % vy;
L}
: unsigned mod(unsigned x, unsigned y) {
return x % vy;

OO ~NOOOPEWN -

10: int main() {

11: unsigned X,y;

12: make_symbolic(&x, sizeof(x));
13: make_symbolic(&y, sizeof(y));
14: assert(mod(x,y) == mod_opt(x,y));
15: return O;

16: }

Figure 11: Trivial program illustrating equivalence checking.
KLEE proves total equivalence when y # 0.

FOLLOW-UP PAPER/PROJECTS

S2E: based on KLEE, integrated with gemu, implements ‘selective running’

A survey of Symbolic Execution Techniques

Symbolic Execution for Software Testing: Three Decades Later

https://xiongyingfei.github.io/SA/2020/main.htm (Peking University Software Analysis)

https://xiongyingfei.github.io/SA/2020/main.htm

THANK YOU

