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An intro to DL



What is machine learning?

• Roughly speaking, learn a mapping function from data
• inputs 𝒙𝒙 to outputs 𝒚𝒚

• e.g image classification -> map images to labels



What is deep learning/neural network?

• Consist of many layers of neurons
• For neurons, 𝑓𝑓 𝒙𝒙 = 𝒈𝒈(𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏)



What is a layer of neural network?

• Multiple neurons together, with the same input:

𝒚𝒚 = 𝐹𝐹 𝒙𝒙 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

𝑓𝑓 𝒙𝒙 = 𝒈𝒈(𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏)



What is neural network?

• Multiple layers stacked together

𝒚𝒚 = 𝐹𝐹 𝒙𝒙 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

𝒛𝒛 = 𝐹𝐹 𝒚𝒚 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒚𝒚 + 𝒃𝒃)



How to get the output with an existing NN?

• This is called predicting/testing.
• Just do some matrix multiplication:

𝒚𝒚 = 𝐹𝐹 𝒙𝒙 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

𝒛𝒛 = 𝐹𝐹 𝒚𝒚 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒚𝒚 + 𝒃𝒃)

This is called feedforward



How are the parameters learned?

• This is called training
• Get some “ground truth” labeled data, a set of 𝒙𝒙,𝒚𝒚 i.e. training data
• Feedforward: 𝒚𝒚′ = 𝒇𝒇(𝒙𝒙), calculate loss: 𝑳𝑳(𝒚𝒚′,𝒚𝒚)
• Gradient Descent 𝑾𝑾 = 𝑾𝑾− 𝜆𝜆

𝜕𝜕𝐿𝐿
𝜕𝜕𝑾𝑾



How are the parameters learned?
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• Backward: SGD
• How to get gradient?
• Backpropagation.

𝑾𝑾 = 𝑾𝑾− 𝜆𝜆
𝜕𝜕𝐿𝐿
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How are the parameters learned?

• For each step/iteration, we sample a batch of data from training 
data(usually sth like 64, 128, 256…)

• Feedforward + backward for this batch, get gradient for each neuron
• Apply some kinds of gradient descent for each neurons:

• SGD:

• Also some other methods  

𝑾𝑾 = 𝑾𝑾− 𝜆𝜆
𝜕𝜕𝐿𝐿
𝜕𝜕𝑾𝑾



How to parallelize the computation?

• Data Parallel: computation for every sample in one batch can be 
parallelized 



How to parallelize the computation?

• Model parallel: computation for different parts of one 
neural network can be parallelized



So what do we want for a DL system?
• A lot of matrix computation, so we want for efficient matrix computation.

• Thus run it efficiently on GPU
• Efficient to represent the computation for NN.

• Use computational graph!
• Automatically compute gradients.

• Parallelize computation easily.
• Enable two types of parallelism efficiently 

• Flexible to add new types of layers/optimization methods.
• Can develop new layers/optimizations with basic operations
• Use a handy wrapper language: usually python

• Once trained, deploy everywhere.
• …… 



System Part



Design Goals

• To unify large-scale and small-scale machine learning 
abstraction

• To allow expressive paralleling progressing



Programming Models

• Graph: stateful dataflow computation

• Node: operation

• Tensor: values that flow through normal

edges



Automatic Gradient Computation



Graph Execution (TF1)

• Fast and efficient;

• Runs in parallel

• Easy to optimize

• With GPU & TPU acceleration capability



Eager Execution (TF2)

• PyTorch - dynamic computation graphs



Client, Master, Worker Layered Cake



Partial Execution



Multi-Device Executions

• Node placement: heuristics placement algo; device 
constraints

• Cross-device communication



Distributed Executions

• Checkpoint support: to connect Variable node to Save 
node/Restore node



General Architecture



Eh?
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