An introduction to Tensorflow

Jinming Hu & Simei He
2021.4.24

An Iintro to DL

What is machine learning?

» Roughly speaking, learn a mapping function from data

* Inputs x to outputs y
« e.g image classification -> map images to labels

What is deep learning/neural network?

« Consist of many layers of neurons
 For neurons, f(x) = g(w'x + b)

What is a layer of neural network?

« Multiple neurons together, with the same input:

f(x) =gw'x +b)

y = F(x) = G(WTx + b)

What is neural network?

« Multiple layers stacked together

y=F(x) =GW"'x + b)

z=F({y)=GW'"y+b)

How to get the output with an existing NN?

* This is called predicting/testing.
« Just do some matrix multiplication:

y=F(x) =GW"'x + b)

z=F(y)=6W"y+b)

This is called feedforward

How are the parameters learned?

* This is called training
« Get some “ground truth” labeled data, a set of (x,y) i.e. training data
« Feedforward: y’' = f(x), calculate loss: L(y’,y)

« Gradient Descent w = W_A;_Ii,

1(60,81)

How are the parameters learned?

- Backward: SGD w= W—A:—;,
« How to get gradient?

« Backpropagation.
oL _ oL aZk anetk
aij B aZk anetk aWk]
= (zx — ty) - f'(nety) - y;

oL _aL 0z Onet
oW 0z onet OW

How are the parameters learned?

 For each step/iteration, we sample a batch of data from training
data(usually sth like 64, 128, 256...)

« Feedforward + backward for this batch, get gradient for each neuron

« Apply some kinds ozgradient descent for each neurons:

. d
SGD: W=W_Aa—w

« Also some other methods

How to parallelize the computation?

« Data Parallel: computation for every sample in one batch can be
parallelized

Min i-lbatch

batch 1~

L

5 batch 3

GPU1 GPU 3

Backward Pass AR Backward Pass RS Backward Pass

Compute Compute Compute
Gradients dx, Gradients dx3

Gradients dx;
Gradients

\ AT /
Updated Model Gradients dx

Update Weights

Whnew = W — adx

Parameter Server

How to parallelize the computation?

» Model parallel: computation for different parts of one
neural network can be parallelized

Data Parallel Model Parallel

So what do we want for a DL system?

A lot of matrix computation, so we want for efficient matrix computation.
« Thus run it efficiently on GPU

Efficient to represent the computation for NN.
« Use computational graph!
« Automatically compute gradients.

Parallelize computation easily.
« Enable two types of parallelism efficiently

Flexible to add new types of layers/optimization methods.
« Can develop new layers/optimizations with basic operations
« Use a handy wrapper language: usually python

Once trained, deploy everywhere.

System Part

Design Goals

* To unify large-scale and small-scale machine learning
abstraction

 To allow expressive paralleling progressing

Programming Models

©
 Graph: stateful dataflow computation
. L o
« Node: operation
(RelU)
 Tensor: values that flow through normal y
Add

edges
@f‘

Automatic Gradient Computation

& -

dAdd

.‘T/

Graph Execution (TF1)

e Fast and efficient;

e Runs in parallel
 Easy to optimize

« With GPU & TPU acceleration capability

Eager Execution (TF2)

« PyTorch - dynamic computation graphs

Google Search Results

TensorFlow
PyTorch
! e
Average 18 Oct 2015 9 Jul 2007 1 Mar 2019

Client, Master, Worker Layered Cake

single process

. client . ——— master

" session _ _____._._._.
run

execute
subgraph

- e e e e o e e e o e o e = = =,

- - -

(

client J [master]
process | _...ion \ process
run
(worker) (worker
process 1 process 2
(GPUo) [] (GPuo) []

~

J

execute
subgraph

7~

worker)
process 3

(GPUL] [cPUo]

Partial Execution

fffff

68 » &
®

cd
SN
/_—V

Multi-Device Executions

« Node placement: heuristics placement algo; device

constraints

e Cross-device communication

(Device B

1]

\/

(Device B

® ©

reCV @recv
\ | J

 Device A

'

send send

<$> é

| Device A

Distributed Executions

« Checkpoint support: to connect Variable node to Save
node/Restore node

General Architecture

, Training libraries][Inference libs]

Python client] [C++ EliEﬂt]

C API

| Distributed master] [Dataflow executor

[Cnn 5!] [\fa r_] [MatMuI_] [Cnnuz DJ [HELU] [Queue]
Kernel implementations

(cpul[GPU] . |
Device layer

| [RPC| [RDMA] ..
L Networking layer

Eh?

badabummbadabing 1 month ago - edited 1 month ago €3 (3 5

I used Tensorflow 1.x for years and felt like I was quite the expert at it. Then, due to a technical
limitation, I had to implement a project in Pytorch (which I had never used before), which I had
tried and failed to implement in Tensorflow for a long time (some graph manipulation). Not only
did the implementation only take a few days, it didn't even take a month before I felt that I was as
good in Pytorch as I was in Tensorflow. Turns out, most of my supposed expert knowledge in
Tensorflow revolved around dealing with the many quirks and weird behaviours of Tensorflow,
while things just work without arcane knowledge in Pytorch.

And Tensorflow has no design philosophy.

	An introduction to Tensorflow
	An intro to DL
	What is machine learning?
	What is deep learning/neural network?
	What is a layer of neural network?
	What is neural network?
	How to get the output with an existing NN?
	How are the parameters learned?
	How are the parameters learned?
	How are the parameters learned?
	How to parallelize the computation?
	How to parallelize the computation?
	So what do we want for a DL system?
	System Part
	Design Goals
	Programming Models
	Automatic Gradient Computation
	Graph Execution (TF1)
	Eager Execution (TF2)
	Client, Master, Worker Layered Cake
	Partial Execution
	Multi-Device Executions
	Distributed Executions
	General Architecture
	Eh?

