
An introduction to Tensorflow

Jinming Hu & Simei He
2021.4.24

An intro to DL

What is machine learning?

• Roughly speaking, learn a mapping function from data
• inputs 𝒙𝒙 to outputs 𝒚𝒚

• e.g image classification -> map images to labels

What is deep learning/neural network?

• Consist of many layers of neurons
• For neurons, 𝑓𝑓 𝒙𝒙 = 𝒈𝒈(𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏)

What is a layer of neural network?

• Multiple neurons together, with the same input:

𝒚𝒚 = 𝐹𝐹 𝒙𝒙 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

𝑓𝑓 𝒙𝒙 = 𝒈𝒈(𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏)

What is neural network?

• Multiple layers stacked together

𝒚𝒚 = 𝐹𝐹 𝒙𝒙 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

𝒛𝒛 = 𝐹𝐹 𝒚𝒚 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒚𝒚 + 𝒃𝒃)

How to get the output with an existing NN?

• This is called predicting/testing.
• Just do some matrix multiplication:

𝒚𝒚 = 𝐹𝐹 𝒙𝒙 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

𝒛𝒛 = 𝐹𝐹 𝒚𝒚 = 𝑮𝑮(𝑾𝑾𝑇𝑇𝒚𝒚 + 𝒃𝒃)

This is called feedforward

How are the parameters learned?

• This is called training
• Get some “ground truth” labeled data, a set of 𝒙𝒙,𝒚𝒚 i.e. training data
• Feedforward: 𝒚𝒚′ = 𝒇𝒇(𝒙𝒙), calculate loss: 𝑳𝑳(𝒚𝒚′,𝒚𝒚)
• Gradient Descent 𝑾𝑾 = 𝑾𝑾− 𝜆𝜆

𝜕𝜕𝐿𝐿
𝜕𝜕𝑾𝑾

How are the parameters learned?

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧𝑘𝑘

�
𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

�
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘

= 𝑧𝑧𝑘𝑘 − 𝑡𝑡𝑘𝑘 � 𝑓𝑓′ 𝑛𝑛𝑛𝑛𝑡𝑡𝑘𝑘 � 𝑦𝑦𝑗𝑗

𝜕𝜕𝐿𝐿
𝜕𝜕𝑾𝑾

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝒛𝒛

�
𝜕𝜕𝒛𝒛
𝜕𝜕𝒏𝒏𝒏𝒏𝒏𝒏

�
𝜕𝜕𝒏𝒏𝒏𝒏𝒏𝒏
𝜕𝜕𝑾𝑾

• Backward: SGD
• How to get gradient?
• Backpropagation.

𝑾𝑾 = 𝑾𝑾− 𝜆𝜆
𝜕𝜕𝐿𝐿
𝜕𝜕𝑾𝑾

How are the parameters learned?

• For each step/iteration, we sample a batch of data from training
data(usually sth like 64, 128, 256…)

• Feedforward + backward for this batch, get gradient for each neuron
• Apply some kinds of gradient descent for each neurons:

• SGD:

• Also some other methods

𝑾𝑾 = 𝑾𝑾− 𝜆𝜆
𝜕𝜕𝐿𝐿
𝜕𝜕𝑾𝑾

How to parallelize the computation?

• Data Parallel: computation for every sample in one batch can be
parallelized

How to parallelize the computation?

• Model parallel: computation for different parts of one
neural network can be parallelized

So what do we want for a DL system?
• A lot of matrix computation, so we want for efficient matrix computation.

• Thus run it efficiently on GPU
• Efficient to represent the computation for NN.

• Use computational graph!
• Automatically compute gradients.

• Parallelize computation easily.
• Enable two types of parallelism efficiently

• Flexible to add new types of layers/optimization methods.
• Can develop new layers/optimizations with basic operations
• Use a handy wrapper language: usually python

• Once trained, deploy everywhere.
• ……

System Part

Design Goals

• To unify large-scale and small-scale machine learning
abstraction

• To allow expressive paralleling progressing

Programming Models

• Graph: stateful dataflow computation

• Node: operation

• Tensor: values that flow through normal

edges

Automatic Gradient Computation

Graph Execution (TF1)

• Fast and efficient;

• Runs in parallel

• Easy to optimize

• With GPU & TPU acceleration capability

Eager Execution (TF2)

• PyTorch - dynamic computation graphs

Client, Master, Worker Layered Cake

Partial Execution

Multi-Device Executions

• Node placement: heuristics placement algo; device
constraints

• Cross-device communication

Distributed Executions

• Checkpoint support: to connect Variable node to Save
node/Restore node

General Architecture

Eh?

	An introduction to Tensorflow
	An intro to DL
	What is machine learning?
	What is deep learning/neural network?
	What is a layer of neural network?
	What is neural network?
	How to get the output with an existing NN?
	How are the parameters learned?
	How are the parameters learned?
	How are the parameters learned?
	How to parallelize the computation?
	How to parallelize the computation?
	So what do we want for a DL system?
	System Part
	Design Goals
	Programming Models
	Automatic Gradient Computation
	Graph Execution (TF1)
	Eager Execution (TF2)
	Client, Master, Worker Layered Cake
	Partial Execution
	Multi-Device Executions
	Distributed Executions
	General Architecture
	Eh?

